Les pages professionnellesdes enseignants chercheurs

Daniel Alazard

Mis à jour le

# Optimal control

Simplified case : Linear system, quadratic performance index, fixed horizon and final state

## Problem :

Let us consider the linear system : From a given initial state , the objective is to bring back the state to 0 within a given time horizon ( ) while minimizing the quadratic performance index : where and are given weighting matrices with and .

## Solution using Pontryagin’s minimum principle : where is the costate vector.

• the optimal control minimizes : • Costate dynamics : • State-costate dynamics : (1), (2) and (3) leads to : with  is the Hamiltonian matrix associated to such a control problem. (4) can be intregrated taken into account boundary conditions on the state-costate augmented vector :

• initial conditions on : (5),
• terminal conditions on : (6).

The set of equations (4), (5) and (6) is also called a two point boundary-value problem.

• Integration of the two point boundary-value problem : where , are the 4 submatrices partionning (WARNING !! : ).

Then one can easily derive the initial value of the costate : where depends only on the problem data : , , , , and not on .

• Optimal control initial value : from equation (2) : • Closed-loop optimal control at any time : at time , assuming that the current state is known (using a measurement system), the objective is still to bring back the final state to ( ) but the time horizon is now . The calculus of the current optimal control is the same problem than the previous one, just changing by and by . Thus :  with : the time-varying state feedback to be implemented in closed-loop according to the following Figure : Remark : is not defined since and is not invertible.

• Optimal state trajectories : The integration of equation (4) between 0 and ( ) leads to (first row) : where : is called the transition matrix.

• Optimal performance index :

For any and a current state one can define the cost-to-go function (or value-function) as : and the optimal cost-to-go function as :  From equation (4) : one can derive that :  Thus (after simplification) : Thus : From this last equation, on can find again the definition of the costate used to solve the Hamilton–Jacobi–Bellman equation ; i.e. : the gradient of the optimal cost-to-go function w.r.t. : The optimal performance index is : .

## Exercises

• Exo #1 : show that is the solution of the matrix Riccati differential equation : also written as : • Exo #2 : considering now that , compute the time-variant state feedback gain and the time-variant feedforward gain of the optimal closed-loop control law to be implemented according to the following Figure. ## Groupe(s) de recherche

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies pour vous proposer des contenus et services adaptés OK
Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.