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INTRODUCTION

Branching processes have their roots in the
study of the so-called family name extinction
problem (see Introduction to Branching
Processes) and find their most natural and
important applications in biology, especially
in the study of population dynamics. They
were also motivated by the study of nuclear
fission reactions and underwent rapid devel-
opment during the Manhattan project under
the impulse of Szilárd and Ulam. To date,
they continue to be very important in reac-
tor physics. They also play a major role in
(applied) probability at large, and appear in
a wide variety of problems in queuing theory,
percolation theory, random graphs, statisti-
cal mechanics, the analysis of algorithms,
and bins and balls problems, to name a few.

The appearance of branching processes in
so many contexts has triggered the need for
extensions and variations around the classi-
cal Galton—Watson branching process. For
instance, their application in particle physics
provided an impetus to study them in con-
tinuous time. The possible extensions are
almost endless, and indeed new models of
processes exhibiting a branching structure
are frequently proposed and studied. Such
models allow for instance time and/or space
to be continuous, individuals to have one
of several types, immigration to take place,
catastrophes to happen, individuals to move
in space, each individual’s dynamic to depend
on time, space, the state of the process itself
or some exogenous resources, a combination
of all these ingredients, and many more.

In this article, we focus more specifically
on three advanced models of branching
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processes: (i) branching processes in random
environment, which are examples of branch-
ing processes, where the dynamic evolves
(randomly) over time; (ii) branching random
walks that exhibit a spatial feature; and
(iii) continuous state branching processes
(CSBPs) that can be seen as continuous
approximations of Galton—Watson pro-
cesses where both time and space are
continuous. The presentation of CSBPs
will also be a good place to briefly discuss
superprocesses. We each time focus on the
most basic properties of these processes,
such as the extinction probability or the
behavior of extremal particles.

This choice of topics does not aim to be
exhaustive and reflects a personal selec-
tion of exciting and recent research on
branching processes. It leaves out certain
important classes of models, which include
multitype branching processes, branching
processes with immigration, and population-
size-dependent branching processes. For
multitype branching processes, the book
by Mode [1] offers a good starting point.
Branching processes with immigration were
initially proposed by Heathcote [2,3] as
branching models that could have a non-
trivial stationary distribution. Lyons et al.
[4] showed, via change of measure argu-
ments, that they played a crucial role in the
study of Galton—Watson processes. Finally,
population-size-dependent branching pro-
cesses, originally proposed by Labkovskii
[5], find their motivations in population
dynamics: they are elegant models that
introduce dependency between individuals
and can account for the important biological
notion of carrying capacity, see for instance
[6–8]. The interested reader can find more
results in the extensive survey by Vatutin
and Zubkov [9,10] that gathers results up to
1993 as well as in the recent books by Haccou
et al. [11] and by Kimmel and Axelrod [12].

Before going on, recall (see Intro-
duction to Branching Processes) that
a Galton—Watson branching process
(Zn, n ≥ 0) is an N-valued Markov chain
obeying to the following recursion:
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Zn+1 =
Zn∑

k=1

Xni, n = 0, 1, 2, . . . , (1)

where the (Xni, n, i = 0, 1, 2, . . .) are inde-
pendent and identically distributed (i.i.d.)
random variables following the so-called
offspring distribution. A Galton—Watson
process is classified according to the value
of the mean m = E(Xni) of its offspring
distribution. If m < 1, the process is subcrit-
ical: it dies out almost surely, the survival
probability P(Zn > 0) decays exponentially
fast at speed mn, and Zn conditioned on being
non-zero converges weakly. If m = 1, the pro-
cess is critical: it dies out almost surely, the
survival probability P(Zn > 0) decays poly-
nomially fast, and Zn conditioned on being
non-zero grows polynomially fast. Finally,
if m > 1, the process is supercritical: it may
survive forever, and grows exponentially fast
in the event {∀n ≥ 0 : Zn > 0} of survival.

BRANCHING PROCESSES IN RANDOM
ENVIRONMENT

A first possible generalization of the
Galton—Watson model allows for the off-
spring distribution to vary over time: then,
the recursion (1) still holds, the Xni s are still
independent but the law of Xni may depend
on n. If πn+1 is the offspring distribution in
generation n and � = (πn), that is, πn+1 is
the common law of the (Xni, i = 0, 1, 2, . . .)
and � is the environmental process, then
this model defines a branching process in
varying environment �. We talk about
branching process in random environment
when the sequence � is itself random and
independent from Z0. Note that in this case,
πn is a random probability distribution on N.

As always in the case of stochastic
processes in random environment, one may
follow two approaches for their study: (i) the
quenched approach, which fixes a realization
of the environment and studies the process
in it; it is most natural from the point of
view of the applications and (ii) the annealed
approach, where the various characteristics
of interest are calculated by averaging
over the environment. For instance, the

extinction probability is a random variable in
the quenched approach, and a deterministic
number in the annealed approach.

When the environmental process is
assumed to be stationary and ergodic, which
includes for instance the case of i.i.d. environ-
ment or the case where the environment is a
stationary Markov chain, it is known since
the pioneering works of Smith [13], Smith
and Wilkinson [14], and Athreya and Karlin
[15,16] that the extinction problem and the
description of the asymptotic growth have
fairly general solutions. Although in the clas-
sical Galton—Watson case, the classification
of Zn is in terms of the mean of the offspring
distribution, it is not difficult to see that in
the case of random (stationary and ergodic)
environment the mean of the logarithm of
the mean is the meaningful quantity to
look at. More precisely, if π is a probability
distribution on N, let m(π ) = ∑

y yπ ({y}) be
its mean. Then, by definition (1), we have

E (Zn | �) = Z0m(π1) · · · m(πn) = Z0eSn ,

where we have defined

Sn = log m(π1) + · · · + log m(πn).

By the ergodic theorem, we have Sn/n →
E(log m(π1)) as n → +∞, which implies
that

[
E(Zn | �)

]1/n → exp[E(log m(π1))]. In
particular, conditionally on the environment,
the mean of Zn goes to 0 if E(log m(π1)) < 0
and to +∞ if E(log m(π1)) > 0. This suggests
to classify the behavior of Zn in terms of
E(log m(π1)), and under some mild technical
assumptions it holds indeed that Zn dies out
almost surely if E(log m(π1)) ≤ 0 (subcritical
and critical cases) and has a positive chance
of surviving if E(log m(π1)) > 0 (supercritical
case). More precisely, we have the following
quenched result: if q(�) is the (random)
extinction probability of Zn given �, then
P(q(�) = 1) = 1 in the former case and
P(q(�) < 1) = 1 in the latter case.

In the supercritical case E(log m(π1)) > 0,
there is an interesting technical condition
that is both necessary and sufficient to
allow the process to survive with posi-
tive probability: namely, in addition to
E(log m(π1)) > 0 one also needs to assume
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E(− log(1 − π1({0})) < +∞. This condition
shows the interesting interplay that arises
between Zn and the environment: even
though E(log m(π1)) > 0 is sufficient to make
the conditional mean of Zn diverge, if
E(− log(1 − π1({0})) = +∞ then the process
almost surely dies out because the probabil-
ity of having an unfavorable environment
is large, where by unfavorable environment
we mean an environment π where the
(random) probability π ({0}) of having no
offspring is close to 1. In other words, if
E(− log(1 − π1({0})) = +∞ then the process
gets almost surely extinct because of the
wide fluctuation of the environment.

The classification of Zn into the subcrit-
ical, critical, and supercritical cases also
corresponds to different asymptotic behav-
iors of Zn conditioned on non-extinction
(here again, we have the quenched results
of Athreya and Karlin [15] in mind). In that
respect, Zn shares many similarities with
a Galton—Watson process, although there
are some subtle differences as we see at the
end of this section. In the supercritical case,
Zn grows exponentially fast in the event of
non-extinction, whereas in the subcritical
case, Zn conditioned on being non-zero con-
verges weakly to a non-degenerate random
variable. In the critical case, Zn conditioned
on being non-zero converges weakly to +∞, a
result that can be refined in the case of i.i.d.
environment.

Indeed, the case where the (πi) are i.i.d.
has been extensively studied. In this case,
Sn is a random walk and recent works have
highlighted the intimate relation between Zn
and Sn. In particular, the classification of Zn
can be generalized as follows. It is known
from random walk theory that, when one
excludes the trivial case where Sn = S0 for
every n, there are only three possibilities
concerning the almost sure behavior of (Sn):
either it drifts to −∞, or it oscillates with
lim infn Sn = −∞ and lim supn Sn = +∞, or
it drifts to +∞. Then, without assuming that
the mean E(log m(π1)) exists, Zn can be said to
be subcritical if Sn → −∞, critical if Sn oscil-
lates, and supercritical if Sn → +∞. Within
this terminology, Afanasyev et al. [17] stud-
ied the critical case and were able to obtain
striking results linking the behavior of Zn to

the behavior of its associated random walk. In
particular, this work emphasized the major
role played by fluctuation theory of random
walks in the study of branching processes in
random (i.i.d.) environment, a line of thought
that has been very active since then.

Let us illustrate this idea with some of
the results of Afanasyev et al. [17], so con-
sider Zn a critical branching process in ran-
dom environment. As Zn is absorbed at 0,
we have P(Zn > 0 | �) ≤ P(Zm > 0 | �) for any
m ≤ n and as Zn is integer-valued, we obtain
P(Zn > 0 | �) ≤ E(Zm | �). It follows that

P(Zn > 0 | �) ≤ Z0 exp
(

min
0≤m≤n

Sm

)
,

which gives an upper bound, in term of the
infimum process of the random walk Sn, on
the decay rate of the extinction probability
in the quenched approach. It turns out that
this upper bound is essentially correct, and
that the infimum also leads to the correct
decay rate of the extinction probability in the
annealed approach, although in a different
form. Indeed, it can be shown under fairly
general assumptions that

P(Zn > 0) ∼ θP(min(S1, . . . , Sn) > 0) (2)

for some θ ∈ (0, ∞). Moreover, conditionally
on {Zn > 0}, Zn/eSn converges weakly to a
random variable W, almost surely finite and
strictly positive, showing that Sn essentially
governs the growth rate of Zn. Finally,
although it is natural to consider the growth
rate and extinction probability of the process
Zn, one can also reverse the viewpoint and
study the kind of environment that makes
the process survive for a long time. And
actually, the conditioning {Zn > 0} has a
strong impact on the environment: although
Sn oscillates, conditionally on {Zn > 0} the
process (Sk, 0 ≤ k ≤ n) suitably rescaled can
be shown to converge to the meander of a
Lévy process, informally, a Lévy process con-
ditioned on staying positive. This provides
another illustration of the richness of this
class of models, where the interplay between
the environment and the process leads to
very interesting behavior.

These various results concern the
annealed approach: Equation (2) is for
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instance obtained by averaging over the
environment. However, the connection
between Zn and Sn continues to hold in
the quenched approach. In Ref. 18, it is for
instance shown that Zn passes through a
number of bottlenecks at the moments close
to the sequential points of minima in the
associated random walk. More precisely, if
τ (n) = min{k ≥ 0 : Sj ≥ Sk, j = 0, . . . , n} is
the leftmost point of the interval [0, n] at
which the minimal value of (Sj, j = 0, . . . , n)
is attained, Zτ (n) conditionally on the envi-
ronment and on {Zn > 0} converges weakly to
a finite random variable. For further reading
on this topic, the reader is referred to Refs 19
and 20.

Let us conclude this section by complet-
ing the classification of branching processes
in random environment. We have mentioned
that similarly as Galton—Watson processes,
branching processes in random environment
could be classified as subcritical, critical, or
supercritical according to whether E(Y) < 0,
E(Y) = 0, or E(Y) > 0, with Y = log m(π1) (in
the ‘‘simple’’ case where Y is indeed inte-
grable). Interestingly, assuming that E(etY ) is
finite for every t ≥ 0, the subcritical phase can
be further subdivided, according to whether
E(YeY ) > 0, E(YeY ) = 0, or E(YeY ) < 0 corre-
sponding respectively, in the terminology of
Birkner et al. [21], to the weakly subcriti-
cal, intermediate subcritical, and strongly
subcritical cases. These three cases corre-
spond to different speeds of extinction: in
the weakly subcritical case, there exists β ∈
(0, 1) such that E(YeβY ) = 0 and P(Zn > 0)
decays like n−3/2[E(eβY )]n; in the interme-
diate subcritical case, P(Zn > 0) decays like
n−1/2[E(eY )]n; finally, in the strongly subcrit-
ical case, P(Zn > 0) decays like [E(eY )]n. These
decay rates are to be compared to the clas-
sical Galton—Watson process, wherein the
subcritical case P(Zn > 0) decays like mn, cor-
responding to the strongly subcritical case,
because when Y is determinist we have the
relation m = EeY .

Further reading on branching processes in
random environment includes, for example,
Refs 22 and 23 for the study of the subcritical
case using the annealed approach, while the
trajectories of Zn under various condition-
ings, namely dying at a distant given moment

and attaining a high level, have been studied
in Refs 24,25 and 26,27, respectively. In
Ref. 28, the survival probability of the critical
multitype branching process in a Markovian
random environment is investigated.

BRANCHING RANDOM WALKS

Branching random walks are extension of
Galton—Watson processes that, in addition
to the genealogical structure, add a spatial
component to the model. Each individual has
a location, say for simplicity on the real line.
Typically, each individual begets a random
number of offspring, as in a regular branching
process, and the positions of these children
form a point process centered around the
location of the parent. For instance, if B =∑

x∈B δx is the law of the point process gov-
erning the locations of the offspring of a given
individual, with δx the Dirac measure at x ∈
R, the locations of the children of an individ-
ual located at y are given by the atoms of the
measure

∑
x∈B δy+x. Branching random walks

can therefore naturally be seen as measure-
valued Markov processes, which will turn out
to be the right point of view when discussing
superprocesses. Another viewpoint is to see
branching random walks as random labeled
trees: the tree itself represents the genealog-
ical structure, whereas the label on an edge
represents the displacement of a child with
respect to its parent. Nodes of the tree then
naturally inherit labels recursively, where
the root is assigned any label, and the label
of a node that is not the root is given by
the label of its parent plus the label on the
corresponding edge.

There is an interesting connection
between branching random walks and (gen-
eral) branching processes. In the case where
the atoms of B are in (0, ∞), particles of the
branching random walk live on the positive
half-line and their positions can therefore
be interpreted as the time at which the
corresponding particle is born. Keeping track
of the filiation between particles, we see
that within this interpretation, each particle
gives birth at times given by the atoms of
the random measure B. This is exactly the
model of general, or Crump—Mode—Jagers,
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branching processes (see Introduction to
Branching Processes).

One of the most studied questions related
to branching random walks concerns the
long-term behavior of extremal particles. Of
course, as the branching random walk is
absorbed when there are no more particles,
this question only makes sense when the
underlying Galton—Watson process is
supercritical and conditioned on surviving.
Let for instance Mn be the location of the
leftmost particle in the nth generation, that
is, the smallest label among the labels of
all nodes at depth n in the tree. Assume
for simplicity that each individual has two
children with i.i.d. displacements, say with
distribution D. Then by construction, a
typical line of descent (i.e., the labels on the
successive nodes on an infinite path from the
root) is equal in distribution to a random
walk with step distribution D, thus drifting
to +∞ if ED > 0. However, Mn is then equal
in distribution to the minimum between
2n random walks, and although a typical
line of descent goes to +∞, the exponential
explosion in the number of particles makes it
possible for the minimal displacement Mn to
follow an atypical trajectory and, say, diverge
to −∞. Finer results are even available,
and the speed at which Mn diverges has
been initiated in a classical work by Ham-
mersley [29] (who was interested in general
branching processes), and later extended by
Kingman [30] and Biggins [31] leading to
what is now commonly referred to as the
Hammersley—Kingman—Biggins theorem.
For instance, in the simple case with binary
offspring and i.i.d. displacements, it can be
shown that Mn → −∞ if infθ≥0E(e−θD) > 1/2
and simple computations even give a precise
idea of the speed at which this happens.
Indeed, if S(k)

n for k = 1, . . . , 2n are the 2n

labels of the nodes at depth n in the tree, we
have by definition for any a ∈ R

P (Mn ≤ an) = P

(
S(k)

n ≤ an for some k ≤ 2n
)

≤
∑

1≤k≤2n

P

(
S(k)

n ≤ an
)

using the union bound for the last inequality.
As the S(k)

n ’s are identically distributed, say

with common distribution Sn equal to the
value at time n of a random walk with step
distribution D, we obtain for any θ ≥ 0

P (Mn ≤ an) ≤ 2n
P (Sn ≤ an)

≤ 2n
[
eθan

E(e−θSn )
]

≤ [
2μ(a)

]n

using Markov inequality for the sec-
ond inequality, and defining μ(a) as
μ(a) = infθ≥0

(
eθa

E(e−θD)
)

in the last term. In
particular, P(Mn/n ≤ a) → 0 if a is such that
μ(a) < 1/2, which makes Mn/n → γ , with
γ = inf {a : μ(a) > 1/2}, the best we could
hope for. It is quite surprising that these sim-
ple computations lead to the right answer,
but the almost sure convergence Mn/n → γ

is indeed the content of the aforementioned
Hammersley—Kingman—Biggins theorem.

The case γ = 0 can be seen as a critical
case, where the speed is sublinear; for a large
class of branching random walks, this case
also corresponds, after some renormalization
(typically, centering the branching random
walk), to study the second-order asymptotic
behavior of Mn for a general γ . In the case
γ = 0, several asymptotic behaviors are
possible and the reader can for instance
consult Addario-Berry and Reed [32] for more
details. Bramson [33] proved that if every
particle gives rise to exactly two particles and
the displacement takes the value 0 or 1 with
equal probability, then Mn − log log n/ log 2
converges almost surely. Recently, Aı̈dékon
[34] proved in the so-called boundary case
that Mn − (3/2) log n converges weakly.

These results concern the behavior of the
extremal particle, and there has recently
been an intense activity to describe the
asymptotic behavior of all extremal particles,
that is, the largest one, together with the
second largest one, and third largest one.
Informally, one is interested in the behavior
of the branching random walk ‘‘seen from its
tip,’’ which technically amounts to consider
the point process recording the distances
from every particle to the extremal one. This
question was recently solved by Madaule
[35], building on previous results by different
authors, in particular the aforementioned
work by Aı̈dékon [34]. The limiting point
process can be seen as a ‘‘colored’’ Poisson pro-
cess, informally obtained by attaching to each
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atom of some Poisson process independent
copies of some other point process.

Initially, one of the main motivations for
studying the extremal particle of a branching
random walk comes from a connection with
the theory of partial differential equations.
Namely, one can consider a variation of the
branching random walk model, called the
branching Brownian motion. In this model,
time and space are continuous; each particle
lives for a random duration, exponentially
distributed, during which it performs a
Brownian motion, and is replaced on death
by k particles with probability pk. Then, McK-
ean [36] and later Bramson [37] observed
that if

∑
k kpk = 2 and

∑
k k2pk < +∞,

then the function u(t, x) = P(M(t) > x), with
M(t) now the maximal displacement of
the branching Brownian motion at time
t, that is, the location of the rightmost
particle, is a solution to the so-called
Kolmogorov—Petrovskii—Piskunov (KPP)
equation, which reads

∂u
∂t

= 1
2

∂2u
∂x2 +

∑
k≥1

pkuk − u

with the initial condition u(0, x) = 1 if x ≥ 0
and u(0, x) = 0 if x < 0. One of the key prop-
erties of the KPP equation is that it admits
traveling waves: there exists a unique solu-
tion satisfying

u
(
t, m(t) + x

) → w(x)uniformly in x as

t → +∞.

Using the connection with the branching
Brownian motion, Bramson [37] was able
to derive extremely precise results on the
position of the traveling wave, and essen-
tially proved that m(t) = √

2t − (3/23/2) log t.
In probabilistic terms, this means that
M(t) − √

2t + (3/23/2) log t converges weakly.
Similarly as for the branching random walk,
there has recently been an intense activity
to describe the branching Brownian motion
seen from its tip, which culminated in
the recent works by Arguin et al. [38] and
Aı̈dékon [34].

Beyond the behavior of extremal parti-
cles, the dependency of the branching ran-
dom walk on the space dimension has been

investigated in Refs 39–45. There are also a
number of articles for the so-called catalytic
random walk when the particles performing
random walk on Z

d reproduce at the origin
only [42,46,47] for which a wide range of phe-
nomena has been investigated. For this and
more, the reader can for instance consult the
recent survey by Bertacchi and Zuccha [48].

CONTINUOUS STATE BRANCHING
PROCESSES

From a modeling standpoint, it is natural
in the context of large populations to won-
der about branching processes in continuous
time and with a continuous state space. In
the same vein, Brownian motion (or, more
generally, a Lévy process) approximates a
random walk evolving on a long time scale.
The definition (1) does not easily lend itself
to such a generalization.

An alternative and, from this per-
spective, more suitable characterization
of Galton—Watson processes is through
the branching property. If Zy denotes
a Galton—Watson process started with
y ∈ N individuals, the family of processes
(Zy, y ∈ N) is such that

Zy+z (d)= Zy + Z̃z, y, z ∈ N, (3)

where (d)= means equality in distribution and
Z̃z is a copy of Zz, independent from Zy.
In words, a Galton—Watson process with
offspring distribution X started with y + z
individuals is stochastically equivalent to the
sum of two independent Galton—Watson
processes, both with offspring distribution
X, and where one starts with y individu-
als and the other with z. It can actually be
shown that this property uniquely charac-
terizes Galton—Watson processes, and Lam-
perti [49] uses this characterization as the
definition of a continuous state branching
process (CSBP). Formally, CSBPs are the
only time-homogeneous Markov processes (in
particular, in continuous time) with state
space [0, ∞] that satisfy the branching prop-
erty, see also Ikeda et al. [50] for more gen-
eral state spaces. Note that even in the
case of real-valued branching processes, the
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state space includes +∞: in contrast with
Galton—Watson branching processes, CSBP
can in principle explode in finite time.

One of the achievements of the theory
is the complete classification of CSBPs, the
main result being a one-to-one correspon-
dence between CSBPs and Lévy processes
with no negative jumps and, in full general-
ity, possibly killed after an exponential time.
This result has a long history dating back
from Lamperti [49], for which the reader
can find more details in the introduction of
Caballero et al. [51] (note that CSBPs were
first considered by Jiřina [52]). There are two
classical ways to see this result. Until further
notice, let Z = (Z(t), t ≥ 0) be a CSBP started
at Z(0) = 1.

The first one is through random time-
change manipulations, and more specifically
through the Lamperti transformation L that
acts on positive functions as follows. If f :
[0, ∞) → [0, ∞), then L(f ) is defined implic-
itly by L(f )(

∫ t
0 f ) = f (t) for t ≥ 0, and explicitly

by L(f ) = f ◦κ with κ(t) = inf {u ≥ 0 :
∫ u

0 f > t}.
Then, it can be proved that L(Z) is a Lévy
process with no negative jumps, stopped at 0
and possibly killed after an exponential time;
conversely, if Y is such a Lévy process, then
L−1(Y) is (well defined and is) a CSBP.

The second way is more analytical. Let
u(t, λ) = − log E(e−λZ(t)): then u satisfies the
semigroup property u(s + t, λ) = u(s, u(t, λ)),
which leads, for small h > 0, to the approxi-
mation

u(t + h, λ) − u(t, λ) = u(h, u(t, λ)) − u(0, u(t, λ))

≈ h
∂u
∂t

(0, u(t, λ)) = −h�(u(t, λ))

once one defines �(λ) = − ∂u
∂t (0, λ). It can

indeed be shown that u satisfies the so-called
branching equation

∂u
∂t

= −�(u), (4)

with boundary condition u(0, λ) = λ. In par-
ticular, � uniquely characterizes u, and thus
Z, and it is called the branching mechanism
of Z. Moreover, it can be proved that �

is a Lévy exponent, that is, there exists a
Lévy process Y with no negative jumps such

that �(λ) = − log E(e−λY(1)) or equivalently,
in view of the Lévy—Khintchine formula, �

is of the form

�(λ) = ε + αλ − 1
2

βλ2

+
∫

(0,∞)

(
1 − e−λx − λx1{x<1}

)
π (dx)

for some measure π satisfying
∫

(0,∞)(1 ∧
x2)π (dx) < +∞ and some parameters
ε, β ≥ 0, and α ∈ R. Conversely, any � of this
form is the branching mechanism of a CSBP,
and as Lévy processes are characterized by
their Lévy exponent, this provides an alter-
native view on the one-to-one correspondence
between CSBPs and Lévy processes.

The long-term behavior of CSBPs was one
of the earliest questions studied by Grey [53],
and they exhibit a richer range of behavior
than Galton—Watson processes. First, Z is
conservative, that is, P(Z(t) < +∞) = 1 for
every t ≥ 0, if and only if 1/� is integrable
at 0+, a sufficient condition for this being
that �(0) = 0 and � ′(0) >−∞. Further, we
observe by differentiating the branching
equation (4) with respect to λ and using
E(Z(t)) = ∂u

∂λ
(t, 0) that E(Z(t)) = exp(−� ′(0)t),

which suggests to classify a (conservative)
CSBP as subcritical, critical, or supercritical
according to whether � ′(0) > 0, � ′(0) = 0,
or � ′(0) < 0, respectively. This classification
turns out to be essentially correct for
conservative processes, under the additional
requirement β > 0: in this case, supercritical
processes may survive forever, with prob-
ability e−λ0 where λ0 is the largest root of
the equation �(λ) = 0, while critical and
subcritical processes die out almost surely,
that is, the time inf {t ≥ 0 : Z(t) = 0} is almost
surely finite.

When β = 0, the situation may be slightly
different. indeed, for any CSBP, the extinc-
tion probability P(∃t ≥ 0 : Z(t) = 0) is strictly
positive if and only if 1/� is integrable at +∞
and �(λ) > 0 for λ large enough; in this case,
the extinction probability is equal to e−λ0

with λ0 as discussed earlier. In particular, we
may have a subcritical CSBP (with � ′(0) > 0)
satisfying both β = 0 and

∫ ∞(1/�) = +∞, in
which case Z(t) → 0 but Z(t) > 0 for every
t ≥ 0. In other words, although Z vanishes,
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in the absence of the stochastic fluctuations
induced by β, it never hits 0. This behavior is
to some extent quite natural, because the α

term corresponds to a deterministic exponen-
tial decay (for �(λ) = αλ we have Z(t) = e−αt)
and the jumps of Z are only positive, so one
needs stochastic fluctuations in order to make
Z hit 0.

We have mentioned in the beginning
of this section the motivation for studying
CSBPs as continuous approximations of
Galton—Watson processes. This line of
thought is actually present in one of the
earliest articles by Lamperti [54] on the
subject. In particular, CSBPs are the only
possible scaling limits of Galton—Watson
processes, that is, if (Z(n), n ≥ 1) is a sequence
of Galton—Watson processes with Z(n)

0 = n
such that the sequence of rescaled processes
(Z

(n)
, n ≥ 1), where Z

(n)
(t) = Z(n)

�ant�/n for some
normalizing sequence an, converges weakly
to some limiting process Z, then Z must be
a CSBP. And conversely, any CSBP can be
realized in this way.

There is, at least informally, an easy way
to see this result, by extending the Lam-
perti transformation at the discrete level of
Galton—Watson processes. Indeed, consider
(S(k), k ≥ 0) a random walk with step dis-
tribution X ′ = X − 1 for some integer-valued
random variable X, and define recursively
Z0 = S(0) and Zn+1 = S(0) + S(Z1 + · · · + Zn)
for n ≥ 0. Then, writing S(k) = S(0) + X ′

1 +
· · · + X ′

k with (X ′
k) i.i.d. copies of X ′, we have

Zn+1 − Zn = X ′
Z1+···+Zn−1+1

+ · · · + X ′
Z1+···+Zn−1+Zn

and so Zn+1 is the sum of Zn i.i.d. copies
of X ′ + 1, that is, Zn is a branching process
with offspring distribution X. This realizes
Z as the time-change of a random walk,
and leveraging on classical results on the
convergence of random walks toward Lévy
processes and continuity properties of the
time-change involved [55], one can prove that
the limit of any sequence of suitably renor-
malized Galton—Watson processes must be
the time-change of a Lévy process, that is, a
CSBP. This approach is for instance carried
on by Ethier and Kurtz [56].

If a CSBP can be viewed as a continuous
approximation of a Galton—Watson process,
it is natural to ask about the existence of
a corresponding genealogical structure. This
question was answered by Duquesne and Le
Gall [57], who for each CSBP Z exhibited a
process H, which they call height process,
such that Z is the local time process of H.
This question is intrinsically linked to the
study of continuum random trees initiated by
Aldous [58,59]. As a side remark, note that
this genealogical construction plays a key role
in the construction of the Brownian snake
[60]. There has also been considerable inter-
est in CSBP allowing immigration of new
individuals: these processes were defined by
Kawazu and Watanabe [61], their genealogy
studied by Lambert [62] and the correspond-
ing continuum random trees by Duquesne
[63].

Finally, let us conclude this section on
CSBPs by mentioning superprocesses. Super-
processes are the continuous approximations
of branching random walks, in the same vein
as CSBPs are continuous approximations of
Galton—Watson processes. They were con-
structed by Watanabe [64], and can techni-
cally be described as measure-valued Markov
processes. Similarly as for the branching
Brownian motion, Dynkin [65] showed that
superprocesses are deeply connected to par-
tial differential equations. The recent book
by Li [66] offers a nice account on this topic.
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