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Abstract

The Levenberg-Marquardt algorithm is one of the most popular algorithms for the solu-
tion of nonlinear least squares problems. In this paper, we propose and analyze the global
and local convergence results of a novel Levenberg-Marquardt method for solving general
nonlinear least squares problems. The proposed algorithm enjoys strong convergence prop-
erties (global convergence as well as local convergence) for least squares problems which do
not necessarily have a zero residual solution, all without any additional globalization strategy.
Furthermore, we proved worst-case iteration complexity bounds for the proposed algorithm.
Preliminary numerical experiments confirm the theoretical behavior of our proposed algo-
rithm.

Keywords: Nonlinear least squares problem, inverse problems, Levenberg-Marquardt method, global
and local convergence, worst-case complexity bound, quadratic and linear convergence.

1 Introduction

In this paper we consider the general nonlinear least squares problem

min
x∈Rn

f(x) =
1

2
‖F (x)‖2, (1)

where F : Rn → Rm is a (deterministic) vector-valued function, assumed continuously differ-
entiable.We do not assume that there is a solution with zero residual, or that we seek such a
solution. In fact, problems of this nature arise in several important practical contexts. One
example is inverse problems [16] (e.g., data assimilation [4, 17], full-waveform inversion [20]),
where typically an ill-posed nonlinear continuous problem is solved through a discretization.
Other examples appear in parameter estimation when a mathematical model approximating a
true distribution is fit to given (noisy) data [16, 20]. In all these cases, the resulting least squares
problems do not necessarily have a zero residual at any point but may be small.
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Recall that the Gauss-Newton method is an iterative procedure for solving (1) and where at
each iterate xj a step is computed as a solution to the linearized least squares subproblem

min
s∈Rn

1

2
‖Fj + Jjs‖2,

where Fj = F (xj) and Jj = J(xj) denotes the Jacobian of F at xj . The subproblem has a
unique solution if Jj has full column rank, and in that case the step is a descent direction for f .

The Levenberg-Marquardt method [11, 12] (see also [15]) was developed to deal with the rank
deficiency of Jj and to provide a globalization strategy for Gauss-Newton. At each iteration a
step is considered of the form −(J>j Jj + γjI)−1J>j Fj , corresponding to the unique solution of

min
s∈Rn

mj(s) =
1

2
‖Fj + Jjs‖2 +

1

2
γj‖s‖2, (2)

where γj > 0 is an appropriately chosen regularization parameter.
In this paper, we will present and analyze the global and local convergence results of a

novel Levenberg-Marquardt method for solving general nonlinear least squares problems. In
particular we present a Levenberg-Marquardt updating strategy that carefully balances the
opposing objectives of ensuring global convergence and stabilizing a Newton local convergence
regime.

The strongest results for local convergence of Levenberg-Marquardt are given in a series
of papers beginning with [21] (such as [8] and [5], see also [6]), wherein it is assumed that
the solution satisfies F (x) = 0. The algorithm we present matches this rate for zero-residual
problems. In the case of non-zero residuals, it has been found that the implementations of
Levenberg-Marquardt converge locally at a linear rate if the norm of the residual is sufficiently
small and the parameter γj goes to zero [10]. Our proof of linear convergence is simpler than
in [10] as well as more completely complementing the other convergence results. Furthermore [10]
only show superlinear convergence for zero-residual problems and only present global convergence
for exact solutions of subproblems. They also present additional analysis in regards for finite
arithmetic that is different in scope of our work, however.

It should be noted that in general the goals of encouraging global and local convergence
compete against each other. Namely, the regularization parameter appearing in the subproblem
should be allowed to become arbitrarily large in order to encourage global convergence, to ensure
the local accuracy of the linearized subproblem, but the parameter must approach zero in order
to function as a stabilizing regularization that encourages fast local convergence.

For example, in the original presentation of the Levenberg-Marquardt method in [11, 12], γj
is not permitted to go to zero, and only global convergence is considered. By contrast, in [21],
for instance, there is a two-phase method where quadratic decline in the residual is tested with
each step that is otherwise globalized by a line-search procedure. Two phase methods, while also
less mathematically elegant, are practically inefficient and challenging to implement in the sense
that it can be difficult to properly ascertain when the region of local convergence is reached.

Our parameter updating strategy is inspired by [7], which presents a Levenberg-Marquardt
method inspired from trust-region algorithm for zero residual least squares problems. The trust-
region radius is updated as ∆j+1 = µ‖Fj+1‖δ, with δ ∈ (1/2; 1) and µ is updated according to
classical global convergence updating strategies, the residual Fj+1 is included to enforce local
convergence. They show global and superlinear local convergence properties for their method.
We extend the results outlined above in scope in the sense of showing the convergence properties
for residual problems which do not necessarily have a zero residual solution, as well as in elegance
in that the method is purely a Levenberg-Marquardt method, with no additional globalization
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strategies, and thus is seamless and is an extension of the standard classical approach to least-
squares problems, as well as improve the convergence rate to quadratic.

Furthermore, we establish a worst-case complexity analysis of our proposed algorithm. In
fact, given a tolerance ε ∈ (0, 1), we aim at estimating the number of iterations needed to reach
an iterate xj such that

‖∇f(xj)‖ < ε. (3)

Worst-case iteration complexity bounds of Levenberg-Marquardt methods applied to non-linear
least squares problems using specific schemes of update for γj can be found in [18, 19, 22].
Up to a logarithmic factor, we show that our proposed algorithm has a complexity bounds
that matches results previously cited Levenberg-Marquardt algorithms. Precisely, we obtain
an iteration complexity bound in Õ

(
ε−2
)
, where the notation Õ(·) indicates the presence of

logarithmic factors in ε. The logarithmic factor in our complexity analysis is due to our strategy
of updating γj to ensure both global convergence and fast local convergence. We note that in
[18, 19, 22] only the global convergence is shown.

1.1 Summary of Contributions

Our contribution amounts to the following. Whereas with the state of the art, in choosing a
Levenberg-Marquardt method, one has four choices with regards to convergence and complexity
guarantees, in particular

1. global convergence with the exact subproblem solution and a quadratic local convergence
for zero-residual problems, or

2. global convergence with the exact and inexact subproblem solution for any (zero or nonzero
residual) inverse problem, or,

3. global convergence and iteration complexity results for any inverse problem, or

4. global convergence, linear local convergence for non-zero residual problems, and superlinear
convergence for zero-residual problems.

In this paper, we present a seamless (i.e., no separate phases) Levenberg-Marquardt method
that simultaneously achieves,

1. global convergence for exact and inexact subproblem solutions for any inverse problem

2. iteration complexity results for any inverse problem,

3. linear local convergence rate for non-zero residual inverse problems,

4. quadratic local convergence rate for zero-residual inverse problems,

and thus match all of the best state of the art results in the literature with just one algorithm.
This is with a relatively simple procedure and standard proof techniques. In addition we present
a thorough set of numerical results demonstrating the order of convergence as well as the global
convergence properties of the method.
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1.2 Outline and Notation

The outline of this paper is as follows. In Section 2 we present the proposed Levenberg-
Marquardt algorithm for solving general nonlinear least squares problems. Section 3 addresses
the inexact solution of the linearized least squares subproblems arising within the Levenberg-
Marquardt method. In Section 4, we show the global convergence of our algorithm. Section 5
describes a worst-case complexity analysis of the proposed method. In Section 6 we derive the
overall local convergence analysis of the proposed algorithm. In Section 7, preliminary numerical
experiments with basic implementations are presented that show the good behavior of our novel
algorithm. Finally, in Section 8 we draw some perspectives and conclusions.

Throughout this paper ‖ · ‖ will denote the vector or matrix l2-norm.

2 A novel Levenberg-Marquardt algorithm

In deciding whether to accept a step sj generated by the subproblem (2), the Levenberg-
Marquardt method can be seen as precursor of the trust-region method [3]. In fact, it seeks to
determine when the Gauss-Newton step is applicable (in which case the regularization param-
eter is set to zero) or when it should be replaced by a slower but safer steepest descent step
(corresponding to a sufficiently large regularization parameter). For that purpose, one considers
the ratio between the actual reduction f(xj)− f(xj + sj) attained in the objective function and
the reduction mj(0)−mj(sj) predicted by the model, given by

ρj =
f(xj)− f(xj + sj)

mj(0)−mj(sj)
.

Then, if ρj is sufficiently above zero, the step is accepted and γj is possibly decreased. Otherwise
the step is rejected and γj is increased.

In this paper we consider the choice of the regularization parameter as γj = µ‖∇f(xj)‖2.
where µ is updated according to the ratio ρj . The considered Levenberg-Marquardt algorithm
is described below.

Algorithm 1: Levenberg-Marquardt algorithm.

Initialization
Choose the constants η ∈ (0, 1), µmin > 0 and λ > 1. Select x0 and µ0 ≥ µmin. Set
γ0 = µ0‖∇f(x0)‖2 and µ̄ = µ0.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (2), and let sj denote such a solution.

2. Compute ρj =
f(xj)−f(xj+sj)
mj(0)−mj(sj) .

3. If ρj ≥ η, then set xj+1 = xj + sj and µj+1 ∈ [max(µmin, µ̄/λ), µ̄] and µ̄ = µj+1.

Otherwise, set xj+1 = xj and µj+1 = λµj .

4. Compute γj+1 = µj+1‖∇f(xj+1)‖2.

A brief remark is warranted regarding the new step acceptance criteria. Note that we have
an auxiliary parameter µ̄, that represents the last good parameter. This is necessary in order to
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balance the requirements of global and local convergence. If the model is relatively inaccurate,
then µj is driven higher, however, when we reach a region of local convergence, we need the
parameter γj to encourage local convergence, and thus bound µj so that the component ‖∇f(x)‖
dominates the behavior of the parameter γj .

3 Inexact solution of the linearized subproblems

Step 1 of Algorithm 1 requires the approximate solution of subproblem (2). As in trust-region
methods, there are different techniques to approximate the solution of this subproblem yielding
a globally convergent step. For the purposes of global convergence it is sufficient to compute
a step sj that provides a reduction in the model as good as the one produced by the so-called
Cauchy step (defined as the minimizer of the model along the negative gradient).

The Cauchy step is defined by minimizing mj(xj − t∇f(xj)) when t > 0 and is given by

scj = − ‖∇f(xj)‖2

∇f(xj)>(J>j Jj + γjI)∇f(xj)
∇f(xj). (4)

The corresponding Cauchy decrease of the model is

mj(0)−mj(s
c
j ) =

1

2

‖∇f(xj)‖4

∇f(xj)>(J>j Jj + γjI)∇f(xj)
.

Since ∇f(xj)
>(J>j Jj + γjI)∇f(xj) ≤ ‖∇f(xj)‖2(‖Jj‖2 + γj), we conclude that

mj(0)−mj(s
c
j ) ≥ 1

2

‖∇f(xj)‖2

‖Jj‖2 + γj
.

The Cauchy step (4) is cheap to calculate as it does not require any system solve. Moreover,
the Levenberg-Marquardt method will be globally convergent if it uses a step that attains a
reduction in the model as good as a multiple of the Cauchy decrease. Thus we will impose the
following assumption on the step calculation:

Assumption 3.1 For every step j,

mj(0)−mj(sj) ≥
θfcd

2

‖∇f(xj)‖2

‖Jj‖2 + γj

for some constant θfcd > 0.

Despite providing a sufficient reduction in the model and being cheap to compute, the Cauchy
step is a particular form of steepest descent. In practice, a version of Algorithm 1 solely based
on the Cauchy step would suffer from the same drawbacks as the steepest descent algorithm on
ill-conditioned problems. One can see that the Cauchy step depends on J>j Jj only in the step

length. Faster convergence can be expected if the matrix J>j Jj also influences the step direction.
Since the Cauchy step is the first step of the conjugate gradient method (CG) when applied

to the minimization of the quadratic s→ mj(s), it is natural to propose to run the CG further
and stop only when the residual becomes relatively small. The truncated-CG step is of the form:

s
cg
j = Vj

(
V >j (J>j Jj + γjI)Vj

)−1
V >j ∇f(xj), (5)
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where Vj is a given unitary matrix whose first column is given by −∇f(xj)/‖∇f(xj)‖.
Since the CG generates iterates by minimizing the quadratic model over nested Krylov

subspaces, and the first subspace is the one generated by ∇f(xj) (see, e.g., [14, Theorem 5.2]),
the decrease attained at the first CG iteration (i.e., by the Cauchy step) is kept by the remaining
iterations. Thus Assumption 3.1 holds for all the iterates s

cg
j generated by the truncated-CG

whenever it is initialized by the null vector.
The following lemma is similar to [1, Lemma 5.1] and will be useful for our global convergence

analysis.

Lemma 3.1 For the three steps proposed (exact, Cauchy, and truncated-CG), one has that

‖sj‖ ≤
‖∇f(xj)‖

γj
=

1

µj‖∇f(xj)‖

and

|s>j (γjsj +∇f(xj))| ≤
‖Jj‖2‖∇f(xj)‖2

γ2
j

=
‖Jj‖2

µ2
j‖∇f(xj)‖2

.

Proof. We will omit the indices j in the proof. We note that the truncated-CG step can
be seen as a generalized step of both exact and Cauchy steps. In fact, the first CG iteration
produces the Cauchy step while the last iteration gives the exact one.

Thus, without loss of generality, for the three proposed steps there exists a unitary matrix V
with first column given by −∇f(x)/‖∇f(x)‖ and such that

s = V
(
V >(J>J + γI)V

)−1
V >∇f(x) = V

(
V >J>JV + γI

)−1
‖∇f(x)‖e1,

where e1 is the first vector of the canonical basis of Rn. From the positive semidefiniteness of
V >J>JV , we immediately obtain ‖s‖ ≤ ‖∇f(x)‖/γ.

To prove the second inequality of Lemma 3.1, we apply the Sherman–Morrisson–Woodbury
formula and obtain

s = V

(
1

γ
I − 1

γ2
(JV )>

(
I +

(JV )(JV )>

γ

)−1

(JV )

)
‖∇f(x)‖e1.

Since V e1 = −∇f(x)/‖∇f(x)‖,

γs+∇f(x) = −1

γ
V (JV )>

(
I +

(JV )(JV )>

γ

)−1

(JV )‖∇f(x)‖e1.

Now, from the fact that (JV )(JV )>/γ is positive semidefinite, the norm of the inverse of I +
(JV )(JV )>/γ is less than one, and thus (since V is unitary)

‖γs+∇f(x)‖ ≤ ‖J‖
2‖∇f(x)‖
γ

.

Finally,

|s>(γs+∇f(x))| ≤ ‖s‖‖γs+∇f(x)‖ ≤ ‖J‖2‖∇f(x)‖2

γ2
.
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4 Global convergence

We start by giving some classical assumptions and then state and prove some lemmas that later
will appear in the global convergence analysis.

Assumption 4.1 The function f is continuously differentiable in an open set containing L(x0) =
{x ∈ Rn : f(x) ≤ f(x0)} with Lipschitz continuous gradient on L(x0) and corresponding constant
ν > 0.

Assumption 4.2 The Jacobian J of F is uniformly bounded, i.e., there exists κJ > 0 such that
‖Jj‖ ≤ κJ for all j.

Note that from the previous two assumptions we conclude that, the gradient of f is uniformly
bounded, i.e., there exists κg > 0 such that ‖∇f(xj)‖ ≤ κg for all j.

The next lemma says that, if we suppose that the gradient norm is bounded below by a non
zero constant gmin, then for a value of the parameter µj sufficiently large, the step is accepted
by the acceptance criterion.

Lemma 4.1 Let Assumptions 3.1, 4.1, and 4.2 hold. Suppose that, for all the iterations j,
there exists a bound gmin > 0 such that ‖∇f(xj)‖ ≥ gmin. Then , one has

lim
µj→∞

ρj = 2.

Proof. By applying a Taylor expansion, one has

1− ρj
2

=
mj(0)− f(xj) + f(xj + sj)−mj(sj) +mj(0)−mj(sj)

2[mj(0)−mj(sj)]

=
R− s>j ∇f(xj)− s>j (J>j Jj + γjI)sj

2[mj(0)−mj(sj)]

=
R− s>j (J>j Jj)sj − s>j (γjsj +∇f(xj))

2[mj(0)−mj(sj)]
where R ≤ ν

2
‖s‖2.

Then, using Lemma 3.1, Assumptions 3.1 and 4.1, one gets

|1− ρj
2
| ≤

ν
2‖sj‖

2 + ‖Jj‖2‖sj‖2 + |s>j (γjsj +∇f(xj))|
θfcd‖∇f(xj)‖2
‖Jj‖2+γj

≤
(
ν
2 + 2κ2

J

)
θfcd

κ2
J + γj
γ2
j

(6)

Since γj = µj‖∇f(xj)‖2, one deduces that

|1− ρj
2
| ≤

(
ν
2 + 2κ2

J

)
θfcd

κ2
J + µj‖∇f(xj)‖2

µ2
j‖∇f(xj)‖4

≤
(
ν
2 + 2κ2

J

)
θfcd

κ2
J + µjκ

2
g

µ2
jg

4
min

.

Now, we can show our main global convergence result
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Theorem 4.1 Under Assumptions 3.1, 4.1, and 4.2, the sequence {xj} generated by Algorithm
1 satisfies

lim inf
j→∞

‖∇f(xj)‖ = 0.

Proof. By contradiction, if the theorem is not true, then there exists a bound gmin > 0 such
that

‖∇f(xj)‖ ≥ gmin, ∀j ≥ 0.

Define S = {j ∈ N| ρj ≥ η} as the set of successful iterations. Hence for j ∈ S, one has

‖Fj‖2 − ‖Fj+1‖2 ≥ η(mj(0)−mj(sj))

≥ η
θfcd

2

‖∇f(xj)‖2

‖Jj‖2 + γj
(using Assumption 3.1)

≥
ηθfcd

2

‖∇f(xj)‖2

κ2
J + µj‖∇f(xj)‖2

≥
ηθfcd

2

g2
min

κ2
J + µjκ2

g

If S is infinite, then since
∑

j∈S ‖Fj‖2 − ‖Fj+1‖2 is finite, we deduce that

lim
j→∞

ηθfcd
2

g2
min

κ2
J + µjκ2

g

= 0,

hence limj→∞ µj = +∞.
Otherwise (i.e., S is finite), from Algorithm 1 we have µj+1 = λµj for all sufficiently large j.

Since λ > 1, we deduce that limj→∞ µj = +∞.
Thus, using Lemma 4.1, we have limj→∞ ρj = 2. Since when ρj ≥ η we decrease µj then,

there exists a positive constant µmax such that µj ≤ µmax holds for all sufficiently large j. Which
leads to a contradiction with the fact that µj goes to infinity when j goes to +∞.

5 Worst-case complexity results

We now establish a worst-case complexity bound of Algorithm 1. We begin by deriving a
condition on the parameter µj for an iteration to be successful.

Lemma 5.1 Let Assumptions 3.1, 4.1, and 4.2 hold. Suppose that at the j-th iteration of
Algorithm 1, one has

µj >
κ

‖∇f(xj)‖2
(7)

where

κ =
a+

√
a2 + 4aκ2

J(1− η1)

2(1− η1)
, a =

ν
2 + 2κ2

J

θfcd
.

Then, the iteration is successful.

Proof. Recall that by classical Taylor expansion formulas, one has:

f(xj + sj)−mj(xj + sj) = f(xj + sj)− f(xj)−∇f(xj)
>sj −

1

2
s>j J

>
j Jjsj −

γj
2
‖sj‖2

≤ ν

2
‖sj‖2 −

1

2
s>j J

>
j Jjsj −

γj
2
s>j sj .
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In addition, the definition of mj(·) yields:

mj(xj)−mj(xj + sj) = −∇f(xj)
>sj −

1

2
s>j J

>
j Jjsj −

γj
2
s>j sj .

As a result, similarly to (6) in the proof of Lemma 4.1, one has

|1− ρj
2
| ≤

ν
2 + 2κ2

J

θfcd

κ2
J + γj
γ2
j

.

Considering the later expression and using a =
ν
2 +2κ2J
θfcd

, we have

ν
2 + 2κ2

J

θfcd

κ2
J + γj
γ2
j

≥ (1− η1) ⇒ 0 ≥ (1− η1)γ2
j − aγj − aκ2

J .

Treating the right-hand side as a second-order polynomial in γj yields

γj ≤
a+

√
a2 + 4aκ2

J(1− η1)

2(1− η1)
⇐⇒ µj ≤

κ

‖∇f(xj)‖2
,

which contradicts (7). We thus conclude that

ν
2 + 2κ2

J

θfcd

κ2
J + γj
γ2
j

< (1− η1),

which in turns implies that |1− ρj
2 | ≤ 1−η1, hence ρj ≥ η1, therefore the iteration is successful.

Our next result states that when the gradient norm stays bounded away from zero, the

parameter µj cannot grow infinitely. Without loss of generality we assume that ε ≤
√

λκ
µ0

, where

κ is the same as in the previous lemma.

Lemma 5.2 Under Assumptions 3.1, 4.1, and 4.2, let j be a given iteration index such that for
every l ≤ j, ‖∇f(xl)‖ > ε where ε ∈ (0, 1). Then, for every l ≤ j, one also has

µl ≤ µmax := max

{
µ0,

λκ

ε2

}
=
λκ

ε2
, (8)

Proof. We prove this result by contradiction. Suppose that l ≥ 1 is the first index such
that

µl >
λκ

ε2
. (9)

By the updating rules on µl, one has either the iteration l − 1 is successful hence µl ≤ µ0 ≤ λκ
ε2

which contradicts (9), or the iteration l − 1 is unsuccessful hence

µl = λµl−1 ⇒ µl−1 =
µl
λ
>
κ

ε2
>

κ

‖∇f(xl)‖2
,

therefore using Lemma 7 implies that the l − 1-th iteration is successful which leads to contra-
diction again.

Thanks to Lemma 5.2, we can now bound the number of successful iterations needed to drive
the gradient norm below a given threshold.
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Proposition 5.1 Under Assumptions 3.1, 4.1, and 4.2, let ε ∈ (0, 1) and let kε be the first
iteration index such that ‖∇f(xkε+1)‖ < ε.

Then, if Sε is the set of indexes of successful iterations prior to kε, one has:

|Sε| ≤ Cε−2, (10)

with

C =
2
(
κ2
J + λκ

)
η1θfcd

f(x0).

Proof. For any j ∈ Sε, one has

f(xj)− f(xj+1) ≥ η1 (mj(xj)−mj(xj+1))

≥ η1
θfcd

2

‖∇f(xj)‖2

κ2
J + γj

≥ η1
θfcd

2

‖∇f(xj)‖2

κ2
J + µj‖∇f(xj)‖2

≥ η1
θfcd

2

‖∇f(xj)‖2

κ2
J + λκ

ε2
‖∇f(xj)‖2

.

Using now the assumption that ‖∇f(xj)‖ ≥ ε, we arrive at

f(xj)− f(xj+1) ≥ η1
θfcd

2

‖∇f(xj)‖2(
κ2
J + λκ

) ‖∇f(xj)‖2
ε2

= η1
θfcd

2

ε2

κ2
J + λκ

.

Consequently, by summing on all iteration indices within Sε and using the fact that f is bounded
below by 0, we obtain

f(x0)− 0 ≥
kε∑
j=0

f(xj)− f(xj+1) ≥
∑
j∈Sε

f(xj)− f(xj+1) ≥ |Sε|
η1θfcd

2
(
κ2
J + λκ

)ε2,
hence the result.

Lemma 5.3 Under the assumptions of Proposition 5.1, let Uε denote the set of unsuccessful
iterations of index less than or equal to kε. Then,

|Uε| ≤ logλ

(
κ

µminε2

)
|Sε|. (11)

Proof. Note that we necessarily have kε ∈ Sε (otherwise ‖∇f(xkε)‖ < ε, which would
contradict the definition of kε).

Our objective is to bound the number of unsuccessful iterations between two successful ones.
Let thus {j0, . . . , jt = kε} be an ordering of Sε, and i ∈ {0, t− 1}.

Due to the updating formulas for µj on successful iterations, we have:

µji+1 ≥ max{µmin, µ̄/λ} ≥ µmin.
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Moreover, we have ‖∇f(xji+1)‖ ≥ ε by assumption.
By Lemma 5.1, for any unsuccessful iteration j ∈ {ji + 1, . . . , ji+1 − 1}, we then must have:

µj ≤
κ

ε2
,

since otherwise µj >
κ
ε2
≥ κ
‖∇f(xj)‖2 and the iteration would be successful.

Using the updating rules for µj on unsuccessful iterations, we obtain:

∀j = ji + 1, . . . , ji+1 − 1, µj = λj−ji−1µji+1 ≥ λj−ji−1µmin.

Therefore, the number of unsuccessful iterations between ji and ji+1, equal to ji+1 − ji − 1,
satisfies:

ji+1 − ji − 1 ≤ logλ

(
κ

µminε2

)
. (12)

By considering (12) for i = 0, . . . , t− 1, we arrive at

t−1∑
i=0

(ji+1 − ji − 1) ≤ logλ

(
κ

µminε2

)
[|Sε| − 1] . (13)

What is left to bound is the number of possible unsuccessful iterations between the iteration
of index 0 and the first successful iteration j0. Since µ0 ≥ µmin, a similar reasoning as the one
used to obtain (12) leads to

j0 − 1 ≤ logλ

(
κ

µminε2

)
. (14)

Putting (13) and (14) the expected result.

By combining the results from Proposition 5.1 and Lemma 5.3, we thus get the following
complexity estimate.

Theorem 5.1 Let the assumptions of Proposition 5.1 hold, and let ε ∈ (0, 1). Then, the first
index kε for which ‖∇f(xkε+1)‖ < ε is bounded above by

C
(

1 + logλ

[
κ

µminε2

])
ε−2, (15)

where C is the constant defined in Proposition 5.1.

For the Levenberg-Marquardt method proposed in this paper, we thus obtain an iteration
complexity bound in Õ

(
ε−2
)
, where the notation Õ(·) indicates the presence of logarithmic

factors in ε. Note that the evaluation complexity bounds are of the same order.
In the case where the problem has zero residuals as a consequence of Theorem 5.1, if the

Jacobian matrix is uniformly non singular over the iterate sequence, we can also provide a com-
plexity bound on the number of iterations needed to drive the residual below a given threshold.
We note that in this case, the non-singularity if the Jacobian matrix at the solution implies that
the minimization problem has zero residuals. A similar result is given in [18].

Corollary 5.1 Let the assumptions of Theorem 5.1 hold, and suppose further that there exists
σ > 0 such that ∀j, λmin(J>j Jj) ≥ σ2. Then, for any ε̂ ∈ (0, 1), the number of iterations required
by Algorithm 1 to reach an iterate for which ‖F (xj)‖ < ε̂ is at most

C
(

1 + logλ

[
κ

µminσ2ε̂2

])
σ−2ε̂−2. (16)
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Proof. By assumption, for every iterate xj , one has:

‖∇f(xj)‖ =
∥∥∥J>j F (xj)

∥∥∥ ≥ σ ‖F (xj)‖ .

Therefore, letting ε = σ ε̂, we have

‖∇f(xj)‖ < ε ⇒ ‖F (xj)‖ < ε̂.

Applying Theorem 5.1 with this particular choice of ε yields the desired result.

Up to a logarithmic factor, the complexity bound obtained in Theorem 5.1 matches results
previously obtained bounds for the Levenberg-Marquardt algorithms of Ueda and Yamashita [18]
as well as that of Zhao and Fan [22]. Note that the latter also uses the regularization γj =
µj‖∇f(xj)‖, while the former directly updates the γj parameter (without decrease). However,
the updating rules used in Algorithm 1 do not relate the value of µj on successful and very
successful iterations, which seems to be the cause for the additional logarithmic factor. In
particular, for a successful iteration, µj is kept unchanged if it is seen as large compared to the
norm of the gradient of the merit function. Our updating rule of µj could be modified in the
same manner to be closer to standard methods [18, 22], in order to get rid of the logarithmic
dependence; however, the method will not behave purely as Levenberg-Marquardt method (with
no additional globalization strategies) with strong local convergence properties. In the next
section we present the local convergence analysis of Algorithm 1.

6 Local convergence

As mentioned in Section 1, the state of the art for problems with zero residual at the solution is
that local convergence at a quadratic rate holds under a Lipschitz continuity and error bound
assumptions. We will replicate this in a manner appropriate for problems without a zero residual
at the solution, and subsequently require only one separate split in the analysis with the final
Lemma to distinguish the convergence rate for zero and non-zero residual problems. In the
sequel of this section, the considered step is the exact solution of subproblem (2).

6.1 Assumptions

In this setting, ‖F (x)‖ is no longer an appropriate measure for the distance to the solution.
Stationarity is associated with a zero gradient, and, as can be gleaned from the form of our update
for the regularization parameter γj in Algorithm 1, this is what we use for the regularization to
encourage fast convergence.

In the case of zero-residual problems, there is a set of solutions to F (x) = 0 and the purpose
of the algorithm is to obtain a point at which the residual is zero. In this case, we seek a
stationary solution where ∇f(x) = 0, however there can be multiple sets of stationary points,
with varying objective values. As the behavior of the algorithm is such that both descent of f(x)
encouraged as well as a solution to stationarity is sought, for a clear picture of the convergence,
we instead propose to consider a particular subset with a constant value of the objective.

Assumption 6.1 There exists a connected isolated set X∗ composed of stationary points to (1),
and Algorithm 1 generates a sequence with an accumulation point x∗ ∈ X∗.

We shall denote by F̄ the value of F at any x̄ ∈ X∗. Note that this is unique, as X∗ is a
connected set of stationary points, so there is no direction of ascent for f(x) among the set of
directions feasible within X∗.

12



Henceforth, from the global convergence analysis, we can assume, without loss of generality,
that there exists a subsequence approaching this X∗. This subsequence need not be unique, i.e.,
there may be more than one subsequence converging to separate connected sets of stationary
points. We shall see that eventually, one of these sets shall ”catch” the subsequence and result
in direct convergence to the solution set at a quadratic rate.

In the sequel N(x, δ) denotes the closed ball of center x (a given vector) and radius δ > 0.
dist(x,X∗) denotes the distance between the vector x and the set X∗, i.e.,

dist(x,X∗) = min
y∈X∗

‖x− y‖.

Next, we detail the required assumptions to guarantee the good local convergence rate of our
proposed algorithm.

Assumption 6.2 It holds that F (x) and J(x) are both locally Lipschitz continuous around x∗ ∈
X∗ with x∗ satisfying Assumption 6.1. In particular this implies, letting x̄ = argminy∈X∗ ‖x−y‖,
that there exists δ1 > 0 such that for x ∈ N(x∗, δ1),

‖∇f(x)‖2 = ‖J(x)>F (x)‖2 = ‖J(x)>F (x)− J(x̄)>F̄‖2 ≤ L1 dist(x,X∗)2, (17)

‖F (x)− F̄‖ ≤ L2 dist(x,X∗), (18)

and that for all x, y ∈ N(x∗, δ),

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L3‖y − x‖2, (19)

where L1, L2, and L3 are positive constants.

From the triangle inequality and assuming (18), we get

‖F (x)‖ − ‖F̄‖ ≤ ‖F (x)− F̄‖ ≤ L2 dist(x,X∗). (20)

We introduce then the following additional assumption,

Assumption 6.3 There exists a δ3 > 0 and M > 0 such that for x ∈ N(x∗, δ3),

dist(x,X∗) ≤M‖F (x)− F̄‖.

As the function x→ F (x)− F̄ is zero residual, the proposed error bound assumption can be seen
as a generalization of the zero residual case [21, 8, 5, 6]. We note that locally the nonsingularity
of J(x) or a standard second order sufficient optimality conditions would imply this error bound.

6.2 Convergence Proof

From the global convergence results, we have established that there is a subsequence of suc-
cessful iterations converging to a solution set X∗. In this section, we begin by considering the
subsequence of iterations that succeed the successful iterations, i.e., we consider the subsequence
K = {j + 1 : j ∈ S}. We shall present the results with a slight abuse of notation that simplifies
the presentation without sacrificing accuracy or generality: in particular every time we denote
a quantity aj , the index j corresponds to an element of this subsequence K denoted above, thus
when we say a particular statement holds eventually, this means that it holds for all j ∈ S + 1
with j sufficiently large.

13



We shall denote µ̂ as an upper bound for µ̄. Note that this exists for {µj}j∈K by the
formulation of Algorithm 1. In addition we shall denote δ as δ = min(δ1, δ2, δ3), with {δi}i=1,2,3

defined in the Assumptions.
In the proof we follow the structure of the local convergence proof in [21], with the additional

point that the step is accepted by the globalization procedure. For all j, we define

x̄j = argminy∈X∗ ‖xj − y‖,

meaning that
‖xj − x̄j‖ = dist(xj , X

∗).

The next lemma is similar to [21, Lemma 2.1].

Lemma 6.1 Suppose that Assumptions 6.1 and 6.2 are satisfied.
If xj ∈ N(x∗, δ2), then the solution sj to (2) satisfies,

‖Jjsj + Fj‖ − ‖F̄‖ ≤ C1 dist(xj , X
∗)2, (21)

where C1 is a positive constant independent of j.

Proof. We have,

‖Jjsj + Fj‖2 ≤ 2mj(sj) ≤ 2mj(x̄j − xj) = ‖Jj(x̄j − xj) + Fj‖2 + γj‖x̄j − xj‖2

≤ ‖Jj(x̄j − xj) + Fj‖2 + µjL1‖xj − x̄j‖4 (using Assumption 6.2)

(a)

≤
((
‖F̄‖+ L3‖xj − x̄j‖2

)2
+ µjL1‖xj − x̄j‖4

)
=

((
L2

3 + µjL1)
∥∥xj − x̄j‖4 + 2L3‖F̄‖‖xj − x̄j‖2 + ‖F̄‖2

)
≤

((
L2

3 + µjL1)
∥∥xj − x̄j‖4 + 2L3

√
L2

3 + µjL1

L2
3

‖F̄‖‖xj − x̄j‖2 + ‖F̄‖2
)

=

(√
L2

3 + µ̂L1‖xj − x̄j‖2 + ‖F̄‖
)2

where (a) is from the triangle inequality as well as Assumption 6.2, i.e.,

‖Jj(x̄j − xj) + Fj‖ ≤ ‖F̄‖+ ‖Jj(x̄j − xj) + Fj − F̄‖
≤ ‖F̄‖+ L3‖xj − x̄j‖2.

Lemma 6.2 Suppose that Assumptions 6.1 and 6.2 are satisfied.
If xj ∈ N(x∗, δ2), then the solution sj to (2) satisfies,

‖sj‖ ≤ C2 dist(xj , X
∗), (22)

where C2 is a positive constant independent of j.

Proof. The solution of the classical Levenberg-Marquardt subproblem, for zero-residual prob-
lems proposed in [21] , when solving F (x)− F̄ = 0, satisfies

argmins
1
2‖Fj − F̄ + Jjs‖2 + 1

2µj‖Fj − F̄‖
2‖s‖2,

= argmins
1
2

(
2F>j Jjs− 2F̄>Jjs+ s>J>j Jjs+ µj‖Fj − F̄‖2s>s

)
14



From the first inequality in [21, Lemma 2.1] it holds that the solution to this problem, ŝj , satisfies
‖ŝj‖ ≤ Ĉ dist(xj , X

∗), where Ĉ is a positive constant independent of j.
Now define the function

G(s, u, v) =
1

2

(
2F>j Jjs+ u>s+ s>J>j Jjs+ vs>s

)
. (23)

We may consider the model in (2) as a perturbation of (23) if we set in the expression of G, u
and v to u0 = 0 and v0 = γj , respectively. The classical Levenberg-Marquardt model for zero
residual problems is the same as (23) with u1 = −2J>j F̄ and v1 = µj‖Fj − F̄‖2.

In other words, if we change in the expression of G the values of u = u1 and v = v1 by
u = u0 and v = v0, respectively, we modify the model from the classical Levenberg-Marquardt
subproblem for zero residual problems to the one defined in (2).

Since the function G is quadratic with respect to s and linear with respect to (u, v), the
conditions of [2, Proposition 4.36] are satisfied, and thus,

‖sj − ŝj‖ ≤ D̂1‖u1 − u0‖+ D̂2‖v1 − v0‖
≤ 2D̂1‖F̄>Jj‖+ D̂2µj |‖Fj − F̄‖2 − ‖F>j Jj‖2|
≤ 2D̂1

(
‖FjJj‖+ ‖Fj − F̄‖‖Jj‖

)
+ D̂2 max(L1, L

2
2)µ̂dist(xj , X

∗)2

≤ 4D̂1 max(
√
L1, BJL2) dist(xj , X

∗) + D̂2 max(L1, L
2
2)µ̂dist(xj , X

∗)2

≤ D̂ dist(xj , X
∗),

where D̂1, D̂2 and D̂ are positive constants independent of j. The second inequality follows
from Assumption 6.2, the triangle and Cauchy-Schwartz inequalities, and the final inequality
again follows from Assumption 6.2 and the boundedness of Jj by BJ (due to the convergence of
xj).

Thus, from the triangle inequality,

‖sj‖ ≤ ‖ŝj‖+ ‖sj − ŝj‖ ≤
(
Ĉ + D̂

)
dist(xj , X

∗).

Lemma 6.3 Suppose that Assumptions 6.1 and 6.2 are satisfied. Then for j sufficiently large,
one has ρj ≥ η.

Proof. Consider first the case of ‖F̄‖ > 0.
It holds that,

mj(0)−mj(sj) = ‖Fj‖2 − ‖Fj + Jjsj‖2 − γj‖sj‖2

(a)

≥ ‖Fj‖2 − ‖Fj + Jj(x̄j − xj)‖2 − γj‖x̄j − xj‖2

= (‖Fj‖+ ‖Fj + Jj(x̄j − xj)‖) (‖Fj‖ − ‖Fj + Jj(x̄j − xj)‖)− γj‖x̄j − xj‖2

≥ (‖Fj‖+ ‖Fj + Jj(x̄j − xj)‖)
(
‖Fj‖ − ‖F̄‖ − L3‖x̄j − xj‖2

)
− γj‖x̄j − xj‖2

(b)

≥ ‖Fj‖
(
L2‖x̄j − xj‖ − L3‖x̄j − xj‖2

)
− γj‖x̄j − xj‖2

≥ ‖F̄‖L2‖x̄j − xj‖ − (‖F0‖L3 + γj) ‖x̄j − xj‖2

= ‖F̄‖L2‖x̄j − xj‖ −
(
L̃3 + γj

)
‖x̄j − xj‖2,

where (a) arises from the optimality of sj for mj , and for (b) we note that for j sufficiently large
‖x̄j − xj‖2 � ‖x̄j − xj‖ and thus L2‖x̄j − xj‖ − L3‖x̄j − xj‖2 ≥ 0.
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Now we write,

|1− ρj | =

∣∣∣∣mj(0)− f(xj) + f(xj + sj)−mj(sj)

mj(0)−mj(sj)

∣∣∣∣
=

∣∣∣∣‖F (xj + sj)‖2 − ‖Fj + Jjsj‖2 − γj‖sj‖2

mj(0)−mj(sj)

∣∣∣∣
=

∣∣∣∣(‖F (xj + sj)‖ − ‖Fj + Jjsj‖) (‖F (xj + sj)‖+ ‖Fj + Jjsj‖)− γj‖sj‖2

mj(0)−mj(sj)

∣∣∣∣
≤ L3‖sj‖2 (‖Fj‖+ ‖Jj‖‖sj‖) + γj‖sj‖2

‖F̄‖L2‖x̄j − xj‖ −
(
L̃3 + γj

)
‖x̄j − xj‖2

→ 0 when j goes to +∞.

The last limit is zero because ‖sj‖ = O(‖xj − x̄j‖) → 0 by Lemma 6.2, γj is bounded, and
‖F̄‖ > 0.

Now, if ‖F̄‖ = 0, we have, from the same derivation,

mj(0)−mj(sj) ≥ ‖Fj‖L2‖x̄j − xj‖ −
(
L̃3 + γj

)
‖x̄j − xj‖2,

and, using Assumptions 6.3 and 6.2 as well as Lemma 6.2,

|1− ρj | ≤
L3‖sj‖2 (‖Fj‖+ ‖Jj‖‖sj‖) + γj‖sj‖2

‖Fj‖L2‖x̄j − xj‖ −
(
L̃3 + γj

)
‖x̄j − xj‖2

≤ C5‖xj − x̄j‖2 (‖xj − x̄j‖+ ‖Jj‖‖xj − x̄j‖) + γj‖xj − x̄j‖2

L̃2‖xj − x̄j‖‖x̄j − xj‖ −
(
L̃3 + γj

)
‖x̄j − xj‖2

,

thus the power for ‖xj − x̄j‖ is larger in the numerator and the fraction converges to zero.

Proposition 6.1 Suppose that Assumptions 6.1, 6.2, and 6.3 are satisfied. Let xj, xj+1 ∈
N(x∗, δ/2). One has,(

1−
√
mL1M

2‖F̄‖
)

dist(xj+1, X
∗)2 ≤ C2

3 dist(xj , X
∗)4 + Ĉ2

3‖F̄‖ dist(xj , X
∗)2 (24)

where the constants C3 and Ĉ3 are given by

C3 = M
√
C2

1 + 2L3C1C2
2 + L2

3 and Ĉ3 = M
√

2C1 + 2L3C2
2 .

Proof. Indeed, using Assumption 6.3 and Lemma 6.1, one has

‖xj+1 − x̄j+1‖2 ≤ M2‖F (xj + sj)− F̄‖2

≤ M2
(
‖F (xj + sj)‖2 − 2F (xj + sj)

>F̄ + ‖F̄‖2
)

≤ M2
((
‖J(xj)sj + Fj‖+ L3‖sj‖2

)2 − 2F (xj + sj)
>F̄ + ‖F̄‖2

)
≤ M2

(
‖J(xj)sj + Fj‖2 + 2L3‖J(xj)sj + Fj‖‖sj‖2 + L2

3‖sj‖4

−2F (xj + sj)
>F̄ + ‖F̄‖2

)
≤ M2

(
C2

1 ‖xj − x̄j‖
4 + 2C1‖xj − x̄j‖2‖F̄‖+ ‖F̄‖2 + 2L3C1‖xj − x̄j‖2‖sj‖2

+2L3‖F̄‖‖sj‖2 + L2
3‖sj‖4 − 2F (xj + sj)

>F̄ + ‖F̄‖2
)
.
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Therefore, using Lemma 6.2, one gets

‖xj+1 − x̄j+1‖2 ≤ C2
3‖xj − x̄j‖4 + Ĉ2

3‖F̄‖‖xj − x̄j‖2 + 2M2|F (xj + sj)
>F̄ − ‖F̄‖2|, (25)

where C3 = M
√
C2

1 + 2L3C1C2
2 + L2

3 and Ĉ3 = M
√

2C1 + 2L3C2
2 are positive constants.

Moreover, by applying a Taylor expansion to x → F (x)>F̄ at the point xj+1 = xj + sj
around x̄j+1, there exists R > 0 such that

|F (xj + sj)
>F̄ −‖F̄‖2| = ‖(J(x̄j+1)>F̄ )

>
(xj+1− x̄j+1)‖+R‖xj+1− x̄j+1‖2 = R‖xj+1− x̄j+1‖2.

Note that the Hessian of x→ F (x)>F̄ is equal to
∑m

i=1 Fi(x̄)∇2Fi(x), and from Assumption 6.2
we have ∇2Fi(x) are bounded. Hence, the constant R is bounded as follows

R ≤ L1

m∑
i=1

|F̄i| ≤
√
mL1‖F̄‖.

Combining the obtained Taylor expansion and (25) gives

‖xj+1 − x̄j+1‖2 ≤ C2
3‖xj − x̄j‖4 + Ĉ2

3‖F̄‖‖xj − x̄j‖2 +
√
mL1M

2‖F̄‖‖xj+1 − x̄j+1‖2.

Which completes this proof.

In the next lemma, we show that, as long as the iterates {xj}j lie sufficiently near to x∗,
the sequence {dist(xj , X

∗)}j converges to 0 quadratically if the problem has a zero residual, or
linearly when the residual is small.

Lemma 6.4 Suppose that Assumptions 6.1, 6.2, and 6.3 are satisfied. Let xj, xj+1 ∈ N(x∗, δ/2).
If the problem has a zero residual, i.e., ‖F̄‖ = 0, then

dist(xj+1, X
∗) ≤ C3 dist(xj , X

∗)2, (26)

where C3 is a positive constant independent of j.

If the problem has a small non-zero residual, i.e., ‖F̄‖ < min
{

1√
mL1M2 ,

1−C2
3δ

Ĉ2
3+
√
mL1M2

}
, then

dist(xj+1, X
∗) ≤ C4 dist(xj , X

∗), (27)

where C4 ∈ (0, 1) is a positive constant independent of j.

Proof. Indeed, Under the zero residual case, i.e., F̄ = 0, then Proposition 6.1 is being equivalent
to

dist(xj+1, X
∗) ≤ C3 dist(xj , X

∗)2.

If the problem has a small non-zero residual such as ‖F̄‖ < min
{

1√
mL1M2 ,

1−C2
3δ

Ĉ2
3+
√
mL1M2

}
,

then Proposition 6.1 will be equivalent to

dist(xj+1, X
∗)2 ≤ C2

3δ
2 + Ĉ2

3‖F̄‖
1−
√
mL1M2‖F̄‖

dist(xj , X
∗)2 = C2

4 dist(xj , X
∗)2,

where C4 =

√
C2

3δ
2+Ĉ2

3‖F̄‖
1−
√
mL1M2‖F̄‖ . Since ‖F̄‖ < 1−C2

3δ

Ĉ2
3+
√
mL1M2

, one has C4 ∈ (0, 1). Which completes

the proof.
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Theorem 6.1 Suppose that Assumptions 6.1, 6.2, and 6.3 are satisfied.
If ‖F̄‖ = 0 then Algorithm 1 converges locally quadratically to X∗. Otherwise, if the problem

has a small non-zero residual as in Lemma 6.4, Algorithm 1 converges locally linearly to X∗.

Proof. From the previous results, it can be seen that eventually for j ∈ K = S + 1, it holds
that there is a step sj such that xj + sj is quadratically (or linearly, depending on the value
of ‖F̄‖) closer to the solution, and is accepted. In particular, by the same argument as given
in [21, Lemma 2.3] xj + sj is always at least as close to x∗ as xj , and thus xj+1 = xj + sj lies in
a ball around x∗ for which all of the local assumptions hold as well.

But then this implies that j + 1 ∈ K as well, and all of the previous results apply to it.
Thus, proceeding inductively we get that for sufficiently large j ∈ K, it holds that all subsequent
iterations are in K and the entire sequence of iterates {xj} (no longer subsequence) locally
converges to X∗, quadratically if ‖F̄‖ = 0 and linearly for small non-zero residual.

Using [9, Lemma 2.9], one can deduce the previous lemma results hold with respect to
{‖xj − x̂‖}j for some limit point x̂ ∈ X∗.

Corollary 6.1 Suppose that Assumptions 6.1, 6.2, and 6.3 are satisfied. Let xj be a sequence
generated by the proposed Algorithm. Then, there are δ1 > 0 and C6 > 0 such that if x0 ∈
N(x∗, δ1) implies that (xj)j converges to some x̂ ∈ X∗ as follows:

If the problem has a zero residual, then

‖xj+1 − x̂‖ ≤ C6‖xj − x̂‖2.

Otherwise, if the problem has a small non-zero residual as in Lemma 6.4, then

‖xj+1 − x̂‖ ≤ C6‖xj − x̂‖.

Proof. Let 0 < δ1 ≤ min
{

δ
2C3

, C4

}
, where δ, C3 and C4 are the same as in Lemma 6.4.

Let wj = xj , rj = dist(xj , X
∗) and R = C2.

If ‖F̄‖ = 0 let τ = 2, r = δ1C3 < 1 and c = C3. Otherwise if the residual is small as in
Lemma 6.4, we set τ = 1, r = C4 < 1 and c = C4.

We have from Lemma 6.2

‖sj‖ = ‖wj+1 − wj‖ ≤ C2 dist(xj , X
∗) = Rrj ,

moreover from Theorem 6.1 we have

rj+1 = dist(xj+1, X
∗) ≤ r dist(xj , X

∗) = rrj , and rj+1 ≤ crτj .

Therefore by using [9, Lemma 2.9] (with the same notation except for the index j which is
replaced by index k), we conclude that (wj)j converges to some limit point ŵ := x̂ and

‖wj+1 − ŵ‖ = ‖xj+1 − x̂‖ ≤
cR

1− r
‖wj − ŵ‖τ =

cR

1− r
‖xj − x̂‖τ .
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7 Numerical results

In this section we present some results of numerical experiments performed implementing Al-
gorithm 1. We performed our experiments using the well known 33 Moré/Garbow/Hillstrom
test problems [13]. All the tested problems are smooth and have a least-squares structure. The
residual function F and the Jacobian matrix for all the test problems [13] are implemented in
MATLAB. Some of these problems have a non-zero value at the optimum and thus are consis-
tent with the scope of the paper. To have a large test set, we create additional 14 optimization
problems by varying the problem dimension n when it is possible. In our results the names of
the latter problems will be followed by “ ∗ ” and we will refer to the final test problems by P.

Among all the test problems in P three problems can be seen as ill-conditioned (meaning
that the condition number of their Jacobian at the optimum is larger than 106). four of them are
even nearly singular (i.e., the condition number of their Jacobian at the optimum is larger than
1020). For all the tested problems, we used the proposed starting points x0 as in the original
optimization test problems [13].

A preliminary implementation of Algorithm 1 was written in MATLAB. The initial param-
eters defining the implemented algorithm were set as follows:

η = 0.01, λ = 5, µ0 = 1, µmin = 10−16.

At each iteration of Algorithm 1 we solved exactly the subproblem using the backslash MATLAB
operator. If the iteration successful, we set the parameter µj+1 equals to max(µ̄/λ, µmin). The
algorithm is stopped when

‖∇f(xj)‖ ≤ ε with ε = 10−5.

If it did not converge within a maximum number of iterations jmax = 10000, then Algorithm 1
was considered to have failed.

The order of convergence was estimated by the quantity

EOC = log

( ‖∇f(xjf )‖
max(1, ‖∇f(x0)‖)

)
/ log

( ‖∇f(xjf−1)‖
max(1, ‖∇f(x0)‖)

)
, (28)

where jf denotes the index of the final computed iterate. The obtained values of EOC will help
to estimate the speed of convergence. For the problems with an EOC ≥ 1.8 Algorithm 1 will
be said to be quadratically converging. For test problems with 1.8 > EOC ≥ 1.1 the algorithm
can be seen as super-linearly converging. Otherwise (i.e., EOC < 1.1 ), Algorithm 1 will be
estimated to converge linearly or worse.

Table 1: Order of convergence for problems in P, zero residual case.
Order of convergence

Total
Linear or worse Super-linear Quadratic

Well-conditioned 2 7 16 25

Poorly conditioned 0 1 2 3

Total 2 8 18 28

Tables 1 and 2 gives the distribution of the order of convergence over our test set P, separated
by whether the solution has a zero or non-zero residual, with the threshold 10−5. The detailed
results are presented in Tables 3 and 4. Within a maximum number of iterations jmax = 10000,
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Table 2: Order of convergence for problems in P, non-zero residual case.
Order of convergence

Total
Linear or worse Super-linear Quadratic

Well-conditioned 4 5 1 10

Poorly conditioned 3 2 4 9

Total 7 7 5 19

Table 3: The complete results for Algorithm 1 for zero residual test problems.
Problem n f(xjf ) ‖∇f(xjf−1)‖ ‖∇f(xjf )‖ Cond(Jjf ) γjf EOC

rosen 2 8.096e-21 7.569e+00 6.355e-11 5.008e+01 2.647e-32 10.3

badscp 2 6.311e-30 1.305e-03 3.235e-10 8.295e+08 1.047e-35 1.96

badscb 2 0.000e+00 4.274e-05 0.000e+00 1.000e+06 0.000e+00 Inf

beale 2 7.026e-25 1.792e-05 2.485e-12 1.275e+01 1.581e-29 2.16

helix 3 1.526e-21 7.884e-04 8.852e-10 2.222e+01 3.210e-27 1.98

gauss 3 5.640e-09 3.726e-03 3.260e-08 7.162e+00 2.126e-16 3.08

gulf 3 2.904e-09 4.356e-05 3.557e-06 1.047e+05 3.317e-24 1.21

box 3 2.440e-13 9.171e-04 1.012e-06 9.133e+01 8.391e-22 1.6

sing 4 8.157e-09 5.303e-05 6.628e-06 6.102e+02 1.799e-19 1.14

wood 4 6.630e-19 5.684e-03 2.535e-08 3.739e+01 6.425e-32 1.87

biggs 6 7.708e-15 6.281e-04 2.843e-07 1.134e+03 8.084e-30 2.01

watson 9 6.999e-07 6.049e-04 1.110e-06 4.132e+04 3.155e-18 1.53

watson* 20 2.913e-15 4.611e-04 2.139e-06 2.776e+13 1.171e-17 1.42

rosex 10 2.496e-30 3.066e+00 2.234e-15 5.008e+01 1.047e-44 8.85

rosex* 20 1.440e-25 1.046e+01 2.498e-13 5.008e+01 6.542e-40 9.81

singx 4 8.157e-09 5.303e-05 6.628e-06 6.102e+02 1.799e-19 1.14

singx* 20 2.539e-09 1.477e-05 1.846e-06 1.220e+03 5.582e-22 1.12

pen2 4 4.711e-06 1.234e-05 8.531e-06 8.527e+03 7.278e-27 1.03

vardim 10 3.857e-29 3.241e-04 1.725e-13 1.965e+01 1.561e-39 1.94

vardim* 20 1.741e-24 5.237e-03 9.998e-11 5.358e+01 9.996e-37 1.72

trig* 20 2.329e-06 1.574e-05 9.646e-06 2.048e+03 4.764e-17 1.04

bv 10 1.260e-14 6.502e-05 2.793e-08 3.792e+01 3.121e-17 1.8

bv* 20 2.324e-08 5.596e-03 7.427e-06 1.392e+02 1.103e-11 2.28

ie 10 2.631e-11 1.595e-02 9.249e-06 1.289e+00 3.422e-12 2.8

ie* 20 5.499e-22 4.084e-05 4.262e-11 1.292e+00 1.453e-23 2.36

trid 10 5.119e-14 5.157e-03 9.827e-07 3.098e+00 6.180e-17 2.01

trid* 20 3.145e-12 1.667e-02 7.554e-06 3.155e+00 3.652e-15 2.04

lin* 20 3.361e-22 4.327e-03 2.593e-11 1.000e+00 4.303e-26 3.48

all the tested problems converged except two meyer and bd where our algorithm stagnate at the
point xjf with gradient norm equals to 1.248× 10−4 and 1.393× 10−4 respectively.

For zero-residual problems (see Table 1), the obtained results confirm our theoretical analysis
in two senses. First, for all the tested problems, we observe the global convergence of our
proposed algorithm. Second, the obtained results show quadratic or super-linear convergence
rates on most of the problems tested. In fact, among the 28 zero-residual tested problems, for
18 problems we observe quadratic convergence, 8 problems are super-linearly converging, and
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Table 4: The complete results for Algorithm 1 for non-zero residual test problems.
Problem n f(xjf ) ‖∇f(xjf−1)‖ ‖∇f(xjf )‖ Cond(Jjf ) γjf EOC

froth 2 2.449e+01 2.300e-05 7.641e-06 3.554e+08 5.838e-27 1.06

jensam 2 6.218e+01 4.652e-05 6.465e-06 4.166e+08 4.179e-27 1.1

bard 3 4.107e-03 7.274e-04 1.601e-06 6.687e+01 6.559e-18 1.56

meyer 3 4.397e+01 8.258e+01 1.248e-04 9.970e+07 5.035e+37 -

kowosb 4 1.538e-04 2.248e-05 7.625e-06 6.927e+01 2.977e-17 1.1

bd 4 4.291e+04 2.149e-04 1.393e-04 1.084e+02 6.269e+37 -

osb1 5 2.732e-05 5.139e-05 2.803e-08 4.884e+04 7.858e-32 1.49

osb2 11 2.007e-02 1.921e-05 3.291e-06 9.020e+01 2.219e-19 1.15

pen1 4 1.125e-05 2.398e-05 8.658e-06 3.162e+02 7.496e-27 1.06

pen1* 20 7.889e-05 3.013e-05 5.564e-06 3.163e+02 3.096e-27 1.07

pen2* 10 1.468e-04 6.296e-05 7.166e-06 1.458e+04 8.414e-21 1.14

trig 10 1.398e-05 1.609e-05 6.412e-06 1.105e+03 3.368e-20 1.08

band 10 1.340e+00 4.767e-05 9.948e-06 5.621e+06 2.594e-23 1.1

band* 20 1.340e+00 1.200e-05 8.143e-06 4.678e+07 2.173e-21 1.02

lin 10 5.000e+00 1.178e-05 3.331e-16 1.000e+00 7.100e-36 2.84

lin1 10 2.317e+00 2.528e-03 5.368e-11 9.172e+63 4.720e-31 1.84

lin1* 20 2.317e+00 3.574e+03 9.083e-07 8.640e+49 2.703e-23 3.43

lin0 10 3.068e+00 7.850e+00 4.949e-11 Inf 4.012e-31 3

lin0* 20 3.068e+00 3.349e+00 1.449e-09 Inf 1.376e-29 2.32

only 2 converge linearly or worse.
For non-zero residual problem (see Table 2), we note that the percentage of the problems

quadratically converging is no fewer. In fact, quadratic convergence was observed only for
linear residual test cases, mainly lin, lin0, lin0*, lin1 and lin1* test problems. Super-linear
convergence was observed for 7 tests cases while the method shows a linear convergence rate for
5 problems.

8 Conclusion

In this paper, we presented and analyzed a novel Levenberg-Marquardt method for solving
nonlinear least-squares problems. In particular, we were interested in the class of problems for
which there is no zero-residual solution (or such a solution is not sought after) and the problem
is potentially ill-conditioned. Without the use of ancillary procedures to enforce globalization,
we were able to formulate a globally convergent Levenberg-Marquardt method and explicite its
worst-case iteration complexity bounds. The proposed method is convergent locally at quadratic
rate for zero residual problems and a linear rate for small residuals. Preliminary numerical results
confirmed the theoretical behavior. Future research can include problems with constraints as
well as those with noisy data.
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