Introduction à la Mécanique Céleste et Eléments de Mécanique Spatiale

7 mars 2011

Résumé

Ce cours a pour objectif une introduction à la mécanique céleste, et à la mécanique spatiale. Il a deux objectifs principaux :

- tout d'abord donner les outils nécessaires à la compréhension et à la résolution des problèmes simples de mécanique spatiale

- donner quelques éléments d'introduction permettant d'appréhender les outils et les concepts modernes utilisés en Mécanique Céleste, qui ont beaucoup évolué ces vingt dernières années.

Ce cours intègre des contributions du cours de mécanique spatiale de la première année de Supaéro, dont une partie a été rédigé par Benoît Meyssignac, qui a entre autres objectifs de donner aux élèves les moyens de montrer la chaoticité du mouvement d'Hypérion sur la base de l'article de Wisdom, Peale et Mignard de 1984 (ICARUS).

Nous voudrions enfin ajouter ici que la partie dynamique de ce cours s'inspire largement de l'enseignement de J.Laskar de l'IMCCE à l'Observatoire de Paris. Il est largement à la source de l'intérêt que nous portons à ce sujet. Qu'il en soit ici remercié.

DM, Août 2010

Table des matières

1	Intr	oduction	n à la mécanique céleste	3
	1.1	Objet d	le la mécanique céleste	3
	1.2	Quelqu	les rappels historiques.	3
	1.3	Le Sys	tème Solaire	7
	1.4	Quelqu	les ordres de grandeur utiles	9
		1.4.1	Répartition des masses dans le Système Solaire	9
		1.4.2	Distances Typiques dans le Système Solaire	9
2	Ron	òros do l	l'espace et du temps	10
4	2.1	Renère	espace ci uu comps	10
	2.1	2 1 1	Coordonnées Terrestres	10
		2.1.1	Coordonnées Herizonteles Locales	10
		2.1.2		11
		2.1.5		12
		2.1.4		12
		2.1.5		13
	0.0	2.1.0		14
	2.2	Point V	/ernal	16
	2.3	Mouve	ment de la Terre	17
		2.3.1	Mouvement de la Terre autour du soleil	17
		2.3.2	La rotation de la Terre	17
		2.3.3	Mouvement de l'axe de la Terre	18
	2.4	Repère	s du temps	20
	2.5	Epoque	е	20
	2.6	Quelqu	les formules de trigonométrie sphérique	22
3	Rap	pels de 1	mécanique	24
	3.1	Princip	be de déterminisme	24
	3.2	Equation	on de Newton	24
	3.3	Mouve	ment dans un champ de gravité central	25
		3.3.1	Trajectoire dans un champ de gravité central	26
		3.3.2	Géométrie de l'ellipse	28
		3.3.3	Troisième Loi de Kepler et Energie Totale	29
		3.3.4	Energie et trajectoire	30
		3.3.5	Systèmes dérivants d'un potentiel	31
		3.3.6	Troisième Loi de Kepler	32
		3.3.7	Généralisation au cas d'un corps central à symétrie sphérique	33
		3.3.8	Anomalie Vraie, Anomalie Moyenne, Anomalie Excentrique, Equation	
			de Kepler	35
	3.4	Equation	ons de Lagrange	38
	3.5	Fonctio	on de Lagrange - Coordonnées généralisées	39
	3.6	Equation	ons de Hamilton	39
	3.7	Fonctio	on de Hamilton et énergie	41

2

TABLE DES MATIÈRES

	3.8	Quelques exemples simples							42
		3.8.1 Le pendule simple							42
		3.8.2 Le problème de Kepler en formalisme de Lagrange		•	•		•	•	43
4	Prot	blème à deux corps							45
	4.1	Approche Képlérienne				•			45
	4.2	L'orbite dans l'espace							46
	4.3	Rappels sur les coniques				• •	•		46
	4.4	L'orbite dans l'espace				• •	•	•	47
	4.5	Paramètres cartésiens-paramètres Képlériens				• •	•	•	48
	4.6	Passage passage d'un repère orbital vers un repère Galiléen			•	• •	•		49
		4.6.1 Passage au repère orbital local	•••		•	• •	•	•	49
5	Le p	roblème à trois corps restreint							51
	5.1	Introduction - hypothèses			•		•	•	51
	5.2	Intégrale de Jacobi			•		•	•	53
	5.3	Position des points de Lagrange L4 et L5 - Approche géométrique	•		•		•	•	56
	5.4	Position des points de Lagrange - Cas général			•		•	•	58
	5.5	Critère de Tisserand.			•		•	•	61
	5.6	Mouvement autour des points de Lagrange L4 et L5			•	• •	•	•	63
6	Cou	plages et résonances							66
	6.1	Résonances			•		•	•	66
	6.2	Paradigme pendulaire en mécanique céleste			•		•	•	69
	6.3	Le couplage Spin orbite : un problème de Kepler perturbé			•		•	•	71
	6.4	Mise en équation du problème			•		•	•	71
	6.5	Calcul du moment quadrupolaire			•		•	•	72
	6.6	Calcul de l'Hamiltonien			•		•	•	74
	6.7	Simplification du problème : cas découplé			•		•	•	75
	6.8	Un problème de Kepler perturbé			•		•	•	76
	6.9	Etude de la rotation du satellite dans le couplage spin-orbite (mode	èle	siı	nŗ	li	fié)	77
	6.10	Intégration du mouvement de rotation			•	• •	•	•	78
7	Pers	pectives							84
8	Ann	exe A : Changements de coordonnées -							85
	8.1	Coordonnées canoniques et transformations canoniques							85
	8.2	Fonctions génératrices				• •	•		90
	8.3	Résolution par la méthode d'Hamilton-Jacobi	• •	•	•		•	•	91
9	Ann	exe B : Le pendule harmonique et le problème de Kepler - App	ro	ch	e l	1a	mi	ilto)-
	nien	ne							93
	9.1	Cas du pendule harmonique				• •	•	•	93
		9.1.1 Ecriture de l'hamiltonien	• •	•	•		•	•	93
	,				F	~		D •	
El	ement.	s de Mecanique Celeste V0.9 3	-15	۶A	Е·	- ১	ίU	PΑ	ERO

		9.1.2	Recherche d'une fonction génératrice	93
		9.1.3	Integration du système	95
	9.2	Cas du	problème de Kepler	96
		9.2.1	Ecriture de l'hamiltonien	96
		9.2.2	Recherche d'une fonction génératrice	97
		9.2.3	Intégration du système	98
		9.2.4	Ecriture en variables de Delaunay	101
		C		100
10	Ann	exe C :	Developpements en serie	103
10	Ann 10.1	exe C : Eviter	les séries	103 103
10	Ann 10.1 10.2	exe C : Eviter Equati	Developpements en serie les séries on de Kepler et développements en série	103 103 104
10	Ann 10.1 10.2 10.3	exe C : Eviter Equati Dévelo	Developpements en serie les séries on de Kepler et développements en série oppements en anomalie moyenne M	103 103 104 105
10 11	Ann 10.1 10.2 10.3 Ann	exe C : Eviter Equati Dévelo exe D :	Developpements en serie les séries on de Kepler et développements en série oppements en anomalie moyenne M Principales formules pour les coniques	103 103 104 105 107

1 Introduction à la mécanique céleste

1.1 Objet de la mécanique céleste

Il est évidemment très ambitieux de s'attaquer à un sujet qui est probablement aussi vieux que l'Humanité, et d'en donner un aperçu en quelques heures. L'objectif de ce cours n'est donc que de donner une première approche des problématiques et des outils de la mécanique céleste, au travers de l'étude des modèles communément utilisés de nos jours.

1.2 Quelques rappels historiques.

Pendant très longtemps, les astronomes ont cherché à retrouver dans les mouvements des corps du Système Solaire les périodicités qui leur permettaient de faire des prédictions (pour les dates des éclipses par exemple). Jusqu'à très récemment (fin du XX^è siècle !) le mouvement des planètes dans le Système Solaire était considéré comme le modèle même de régularité. On restait dans le modèle du "Cosmos" des Grecs, qui, par opposition au "Chaos", suppose régularité et prédictibilité.

Par ailleurs, jusqu'à la physique de Newton, les modèles célestes (y compris les modèles héliocentriques) étaient uniquement descriptifs et cinématiques. La rupture principale de la physique vient du fait que l'on peut désormais prédire les trajectoires des planètes, et que, par voie de conséquence, on comprend que les trajectoires idéales sont pertubées par l'ensemble des autres corps du Système Solaire. Toutefois, après les calculs montrant la stabililité à long terme des mouvements séculaires des planètes externes telles que Jupiter par le Verrier (cf [6]), on était revenu à la conception d'un Système Solaire stable à long terme, malgré les évolutions séculaires des orbites planétaires.

Il n'en est rien. Les résultats de ces dernières années montrent au contraire que le mouvement des planètes lui-même est imprédictible (non pas du fait de l'accumulation des erreurs numériques, mais intrinsèquement) et qu'il est impossible de prévoir son évolution au delà de 100 millions d'années environ, ce qui est très court, comparé aux 4,6 milliards d'années d'existence du Système Solaire.

Quelques repères historiques :

Le modèle Pythagoricien (-500 av. JC) : Les 7 objets (Soleil, cinq planètes et Lune) sont attachés à sept sphères concentriques transparentes.

FIGURE 1 – Le modèle Pythagoricien

Le philosophe Grec Aristote pensait que les cieux étaient composés de 55 sphères cristallines concentriques. A chacune de ces sphères étaient attachés des objets célestes tournant à des vitesses différentes. La Terre était au centre (modèle géocentrique).

Le système Ptolémaïque (150 apr. J.C.) : La théorie qui prévalut en Europe pendant de longs siècles été proposée par Ptolémée dans son Almagest vers 150 après JC. La terre est stationnaire au centre de l'Univers Les étoiles sont piquées sur une large sphère externe qui tourne rapidement C'est un modèle religieux.

Les incertitudes sur le modèle (en particulier ce modèle géocentrique ne peut pas expliquer le

Eléments de Mécanique Céleste V0.9

6

mouvement apparent rétrograde de Mars) n'empêchaient pas ailleurs de connaître précisément les cycles astronomiques.

FIGURE 3 – Vu de la Terre, le mouvement apparent de Mars est rétrograde

Le calendrier Métonique : Le cycle dit de Méton ou cycle métonique est un commun multiple approximatif des périodes orbitales de la Terre et de la Lune.

Au bout de dix-neuf ans, les mêmes dates de l'année correspondent avec les mêmes phases de la Lune. Cela est dû au fait que dix-neuf années tropiques et 235 mois synodiques ne diffèrent que de deux heures. L'astronome grec Méton avait déjà remarqué cette coïncidence aux environs de -432, comme le fit l'astronome chaldéen Kidinnu vers -380 av JC. Le cycle de Méton est employé dans les calendriers luni-solaires. En effet, dans un calendrier luni-solaire typique, la plupart des années sont des années lunaires de douze mois, mais sept des dix-neuf années possèdent un mois supplémentaire, connu sous le nom de mois intercalaire ou embolismique. Aux années de 12 mois "normales ", s'ajoutent les années embolismiques de 13 mois. Ce calendrier, connu dans l'Antiquité, a été repris par les Juifs lors de l'Exil de Babylone (il est toujours en vigueur), et servait de base à la détermination de la Pâque Chrétienne avant le concile de Nicée.

FIGURE 4 – La répartition des années embolismiques dans le cycle métonique de 19 ans

Aujourd'hui le cycle de 19 ans sert toujours de base au *Comput* (Calcul) de la lune théorique sur laquelle est basée la détermination de la date de Pâques (Pâques est célébrée le dimanche qui suit le quatorzième jour de la Lune qui atteint cet âge au 21 mars ou immédiatement après).

La calendrier Métonique a été simplifié par les Musulmans, qui ont supprimé les années embolismiques (ceci a pour effet de désynchroniser le calendrier par rapport à l'année solaire). De plus, ceux-ci ont largement conservé l'observation pratique de la Lune pour l'ajustement du

Eléments de Mécanique Céleste V0.9

calendrier, même si un débat est encore à ce jour en cours sur l'utilisation du calcul dans la détermination du calendrier.

La révolution copernicienne En 1543, Copernic formula un autre modèle d'Univers, dans lequel la Terre tourne autour du Soleil, le modèle Héliocentrique. Les orbites des planètes sont toujours circulaires, mais dans ce modèle il n'y a plus de problème de mouvement rétrograde.

FIGURE 5 – La théorie des épicycles de Ptolémée et le Modèle Copernicien

1.3 Le Système Solaire

Le Système Solaire est composé du Soleil, de quatre planètes telluriques internes (Mercure, Vénus, la Terre, Mars), d'une ceinture d'astéroïdes composée de petits corps rocheux (parmi lesquels des corps de masse respectable, tels Cérès), de quatre planètes géantes gazeuses (Jupiter, Saturne, Uranus et Neptune) et d'une seconde ceinture d'objets glacés, appelée ceinture de Kuiper.

FIGURE 6 - Les différentes échelles du Système Solaire crédits Wikipedia

Au-delà de cette ceinture, aux confins du Système Solaire, on trouve un disque d'objets épars, nommé suivant la théorie avancée par Jan Oort, le nuage d'Oort. C'est de ce nuage que proviennent la plupart des comètes, qui destabilisés par des perturbations gravitationnelles d'origines diverses, "tombent" vers le Système Solaire interne.

- Le Système Solaire comprend également :
 - Des planètes naines : Elles sont à ce jour au nombre de cinq . Parmi les Planètes naines se trouve Pluton qui a été déchue de son statut de Planète du fait de sa proximité avec les autres objets transneptuniens. Les planètes naines portent les noms de divinités diverses. On en dénombre cinq au 17 septembre 2008. Ce sont : Pluton, le plus ancien objet connu de la ceinture de Kuiper, Cérès, le plus grand objet de la ceinture d'astéroïdes, la plus grosse des planètes naines, qui se trouve dans le disque des objets épars, Sedna, Makemake et Haumea, objets de la ceinture de Kuiper. Les planètes orbitant au-delà de Neptune (ce qui est le cas de quatre d'entre-elles) sont également classifiées comme plutoïdes.
 - Un nombre très élevé de petits corps de masses, compositions, formes et orbites très diverses. Il s'agit aussi bien des astéroïdes, des comètes, poussières, que du gaz interplanétaire, etc ...

Toutes les planètes, excepté la Terre, portent les noms de dieux et déesses de la mythologie Romaine. Par extension, le terme "système solaire" (sans majuscules) est employé pour désigner d'autres systèmes planétaires ; on préfère parler de "système stellaire".

1.4 Quelques ordres de grandeur utiles

1.4.1 Répartition des masses dans le Système Solaire

Le tableau suivant présente la répartition des masses dans le Système Solaire.

Corps	Masse	Commentaires
Soleil	99,85%	La quasi totalité de la masse
Planètes	0,135%	Jupiter pour l'essentiel
Le reste	0,015%	Gaz, poussières, comètes

On en déduit aisément qu'au premier ordre, la dynamique des objets du Système Solaire est régie par le Soleil.

1.4.2 Distances Typiques dans le Système Solaire

Quelques ordres de grandeur utiles pour comprendre les distances en jeu en mécanique céleste. Figurent également les distances-lumière, utiles pour comprendre les contraintes de communication avec les sondes spatiales.

Durée	Distance	Exemple
3 secondes	900000km	A/R Terre Lune
3 minutes	54E6 Km	Distance Mercure Soleli
8,3 minutes	149,6E6 km	Distance Terre Soleil (1 UA).
1 heures	1E9 km	1.5 x Jupiter Soleil
12,5 heures	90 UA	Voyager 1
1 an	63000 UA	1 Année Lumière.
4 ans	252000 UA km	Proxima du Centaur.

2 REPÈRES DE L'ESPACE ET DU TEMPS

2 Repères de l'espace et du temps

2.1 Repères de l'espace

2.1.1 Coordonnées Terrestres

Imaginons un cercle à la surface d'une sphère dont le centre est situé sur un axe passant par le centre de la sphère Un tel cercle qui contient le pôle Nord et le pôle Sud est appelé méridien, ou ligne des longitudes. Pour n'importe quel point de la surface de la Terre, on peut définir un méridien. Le méridien origine est situé au Royal Observatory de Greenwich, en Angleterre. La longitude est exprimée en degrés, minutes, and secondes d'arc de 0 to 180 degrés Est ou Ouest à partir du méridien origine. Par exemple à Toulouse la longitude est 1,27° E. distance au centre de la Terre.

FIGURE 7 – Lignes des latitudes.

De la même façon, on peut définir un grand cercle où tout point est équidistant des pôles, appelé équateur. Les cercles inscrits dans les plans parallèles à l'équateur définissent ainsi les lignes de latitude. La latitude est exprimée comme l'arc entre l'équateur et la parallèle, vu depuis le centre de la Terre. Elle s'exprime de -90°(S) à +90°(N) La latitude de Toulouse est 43° 36' de latitude nord.

FIGURE 8 – Lignes des longitudes.

Eléments de Mécanique Céleste V0.9

Un degré de latitude vaut 111 km à l'équateur, et par définition exactement 60 miles nautiques .

FIGURE 9 – Meridiens.

2.1.2 Coordonnées Horizontales Locales

Les coordonnées horizontales locales sont relatives à un lieu de latitude et de longitude données.

FIGURE 10 - Coordonnées horizontales locales.

Eléments de Mécanique Céleste V0.9

13

2.1.3 Coordonnées Locales

Si l'on se place dans le plan tangent à la Terre, en en lieu de Latitude et de Longitude données, on peut définir les coordonnées locales.

FIGURE 11 – Coordonnées locales.

Exemple : les points cardinaux s'expriment en coordonnées locales de la manière suivante :

	Nord	Sud	Est	Ouest
Azimut	180°/-180°	0°	270°/-90°	90°/-270°
Hauteur	0		0	0

2.1.4 Géoïde de référence

Une fois ces axes définis 'en principe', il faut toutefois se poser la question de l'origine de ces axes, ainsi que de leur orientation précise.

Les répartitions de masse à l'intérieur de la Terre solide sont dynamiques : La Terre est dynamique :variation des océans, dérive des continents, impact des marées

, ainsi que les effets de marée (qui modifient ces répartitions de masse dans le temps), font que 'l'objet' terre est loin, non seulement d'être une sphère parfaite, mais est aussi loin d'être un ellipsoïde parfait. Cela se traduit en pratique par des mouvement de la croûte terrestre et de la répartiotion de masse sous-jacente, menant à des variations de l'orientation du champ de gravité à la surface de la Terre, et donc du plan horizontal local. Pour pallier à ce problème, on utilisera donc comme référence un 'système géodésique', en pratique une représentation de la surface terrestre ellipsoïdale, qui minimise l'erreur par rapport à une équipotentielle du champ de gravité terrestre et on exprimera les latitudes, longitudes et hauteurs par rapport à cet ellipsoïde conventionnel.

FIGURE 12 – Le géoïde terrestre vu par le Satellite GOCE (crédits ESA/CNES) Les déformations sont exagérées.

La plupart des systèmes reposent sur un ellipsoïde de révolution choisi par convention. II est défini par :

- son centre O
- son demi grand axe a
- son coefficient d'aplatissement f

L'ITRS (International Terrestrial Reference System) constitue le système géodésique le plus précis à l'échelle mondiale (précision centimétrique) WGS 84 (Wordl Geodetic System) est le système de référence généralement utilisé (celui du GPS)

2.1.5 Coordonnées équatoriales célestes

Si l'on veut se débarrasser des problèmes liés à l'utilisation d'un repère local -pour repérer un objet dans le ciel en s'affranchissant de l'heure ou de la position sur la Terre-, on utilisera plutôt un système de coordonnées équatoriales.

Dans ce cas, le plan de référence est le plan de l'équateur (en projection sur la sphère céleste), et l'axe Nord-Sud est un axe 'céleste'. Le point origine s'appelle *le point vernal* (voir ref 2.2). L'ascension droite est l'angle mesuré entre la projection de l'objet sur l'équateur célete et le point vernal (en partant vers l'est de ce point). L'angle entre cet équateur céleste et l'objet s'appelle *la déclinaison*. La déclinaison se mesure généralement en degrés. Elle est positive pour les objets situés dans l'hémisphère nord et négative pour les autres.

Eléments de Mécanique Céleste V0.9 15

FIGURE 13 – Coordonnées Equatoriales Célestes.

2.1.6 Coordonnées écliptiques

FIGURE 14 – Coordonnées Ecliptiques.

De la même façon, si l'on s'intéresse aux mouvements dans le Système Solaire, on pourra utiliser des coordonnées écliptiques héliocentriques (c'est à dire centrées sur le Soleil). Cela est utile par exemple pour les trajectoires des planètes, ou bien pour celles des sondes spatiales dans

Eléments de Mécanique Céleste V0.9

FIGURE 15 – Coordonnées Ecliptiques Géocentriques.

la partie Héliocentrique de leur trajet.

Dans ce cas, l'axe principal est un axe passant par le centre du soleil et perpendiculaire au plan de l'écliptique Les coordonnées sont appelées la latitude écliptique et la longitude écliptique.

FIGURE 16 – Coordonnées Ecliptiques Héliocentriques

Eléments de Mécanique Céleste V0.9

17

2.2 Point Vernal

Par définition, si l'on se place dans un repère terrestre, le Soleil se trouve donc toujours sur le cercle écliptique. Les plans de référence équatoriaux et écliptiques étant définis de manière naturelle, il convient de déterminer le point de référence pour fixer les repères (et conclètement, donner une droite de référence pour la mesure des angles de latitude et de longitude). Ce point origine s'appelle *le point vernal*

FIGURE 17 – Le point Vernal.

Par définition, ce point vernal est le point nodal ascendant du soleil, c'est à dire la direction du soleil au printemps. Avec cette définition, on peut exprimer les coordonnées du point vernal dans les repères équatoriaux.

	Printemps	Eté	Automne	Hiver	Plan de référence : équateur
α	0h	6h	12h	18h	
δ	0°	23°27'	0°	-23°27'	Plan de
λ	0°	90°	180°	270°	référence :
β	0°	0°	0°	0°	

FIGURE 18 – Coordonnées du point Vernal

Eléments de Mécanique Céleste V0.9

18

2.3 Mouvement de la Terre

Tout d'abord, il n'est pas inutile d'introduire quelques définitions. Le terme « rotation » se réfère au mouvement d'un objet autour de son axe propre, tandis que le terme « révolution » se réfère au mouvement de son centre de masse autour d'un autre objet.

La *rotation* de la Terre autour de son axe par rapport aux étoiles a une période de 86164 secondes, soit 236s moins que le jour solaire moyen. Son inclinaison par rapport au plan de l'écliptique est de 23,45° La *révolution* de la Terre autour du soleil dure 365,25 jours solaires moyens (année Julienne).

2.3.1 Mouvement de la Terre autour du soleil

La Terre parcourt son orbite en 365 jours, 6 heures, 9 minutes (par rapport aux étoiles). Du fait de l'excentricité de son orbite, sa vitesse varie entre 29.29 et 30.29 km/s au cours de l'année. Les 6 heures, 9 minutes et quelques donnent un jour supplémentaire tous les quatre ans (voir la section sur les calendriers au paragraphe 1.1).

FIGURE 19 - Mouvement de la terre autour du Soleil

2.3.2 La rotation de la Terre

Par rapport aux étoiles, la Terre fait un tour sur elle même en 86164s (Jour Sidéral). Après un jour, le mouvement de la Terre sur son orbite autour du Soleil décale le moment où il est midi en un méridien donné. Le jour solaire moyen de 24 h, c'est à dire 86400 secondes, est le temps moyen, au cours de l'année, qui sépare deux passages consécutifs du soleil au zénith d'un méridien donné.

Eléments de Mécanique Céleste V0.9 19

2 REPÈRES DE L'ESPACE ET DU TEMPS

FIGURE 20 - Jour Solaire - Jour Sidéral

2.3.3 Mouvement de l'axe de la Terre

Les forces associées à la rotation de la Terre impliquent une déformation de la Terre à l'équateur (bourrelet équatorial) L'impact des forces de marée (Lune, soleil) sur ce bourrelet équatorial va resulter en un couple gyroscopique, qui implique la précession de l'axe de la Terre . Cette précession a une période d'environ 26000 ans. Si aujourd'hui le Pôle Nord Céleste indique l'Etoile polaire, il indiquera approximativement Deneb, puis Vega au cours des prochains millénaires.

FIGURE 21 - Mouvement de Precession de la Terre

En superposition du mouvement moyen de 26000 ans, se rajoute une petite oscillation de

Eléments de Mécanique Céleste V0.9 20

période 18,6 ans, avec une amplitude de 9,2 arc secondes. Cette nutation est due à des effets de résonance entre les orbites des planètes internes.

FIGURE 22 – Mouvement de Précession et de Nutation de la Terre - (c) Starry Night Education

Eléments de Mécanique Céleste V0.9

21

2.4 Repères du temps

La mécanique céleste classique utilise une notion intuitive, qui a depuis été remise largement en cause par la relativité générale : un temps newtonien découplé du mouvement. Toutefois, à quelques corrections près, c'est ce temps Newtonien qui est utilisé pour la mécanique céleste. Les principales échelles de temps utilisées sont :

- Le Temps Atomique International (TAI) : Il s'agit d'un temps atomique, fabriqué par le Bureau des Poids et Mesures (BIPM) depuis 1985. Il s'agit d'une construction sur un barycentre pondéré du temps de plus de 200 horloges atomiques dans 70 laboratoires, donc extrêmement stable. Ce temps est bien évidemment découplé des phénomènes célestes.
- Le temps universel 1 (UT1) est un temps astronomique. Il s'agit du midi vrai observé à Greenwich. Il est basé sur la rotation de la Terre et varie continuement.
- Le temps universel coordonné (UTC)) est une approximation de UT1 variant comme le TAI. Il diffère d'au plus une seconde de l'UT1, car il est recalé de temps en temps de manière à ce que la différence entre l'UTC et le TAI soit inférieure à une seconde. C'est (en gros) l'heure du GPS. Par rapport à l'UT1, il varie de manière beaucoup plus régulière que la rotation de la Terre - Par exemple il n'est pas affecté par les gros séismes ...

FIGURE 23 – Evolution Relative des temps UTC, TAI et UT1 - (c) Oups, je ne trouve plus.

2.5 Epoque

On l'a vu, les angles sont repérés à partir d'une direction particulière dans l'espace, le point vernal $\vec{\gamma}$ qui indique la direction du soleil le 21 mars à 0h. Toutefois, la détermination du repère de référence ne va pas de soi. En effet, le mouvement de la Terre est complexe : il associe la révolution de la Terre autour du Soleil, à sa rotation propre (non constante) autour de son axe, le

22

Eléments de Mécanique Céleste V0.9

tout étant complexifié par des mouvements de précession et de nutation dus à l'interaction de la Terre non parfaitement sphérique avec l'ensemble des planètes du Système Solaire ...

Nous devons toutefois nous donner un repère inertiel dans cet environnement mouvant. Par convention, on va donc figer un «instantané» de la position de la Terre dans son orbite autour du soleil qui va servir de référence pour calculer tous les mouvements des objets considérés (planètes, satellites, etc ...). Cet «instantané» est appelé «époque» ou «repère». Par convention, on utilise aujourd'hui le repère J2000, dont la référence est donnée par le plan moyen de l'écliptique et la direction de l'équinoxe de printemps à midi TU (Temps Universel)le 1er janvier 2000. J veut dire que l'on prend conventionnellement une année Julienne (365,25 j) comme référence. Le point Vernal sera donc spécifié à cette époque particulière.

2.6 Quelques formules de trigonométrie sphérique

Il est très souvent utile de considérer des élements de trigonométrie sphérique. On notera A, B et C trois points sur la sphère comme figuré sur 25. On note respectivement a b et c les longueurs à la surface de la sphère aux côtés opposés aux sommets A, B et C. On note (parfois) α, β et γ les angles de ces mêmes sommets.

On remarquera que les longueurs a, b et c peuvent être assimilées à des angles par rapport au centre de la sphère (et on le fera souvent !).

FIGURE 24 - Convention de notation des triangles sphériques

La formule des cosinus relie la longueur d'un côté du triangle à celles de deux autres côtés ainsi qu'à l'angle entre les deux :

$$\cos c = \cos a \cos b + \sin a \sin b \cos \gamma \tag{1}$$

Dans le cas particulier où le triangle est rectangle en C (ce que nous utiliserons souvent, car cette formule permet de calculer la distance entre deux points sur la Terre ou sur une sphère quelqconque de rayon connu si l'on connaît les latitudes et longitudes).

$$\cos c = \cos a \cos b \tag{2}$$

La formule des sinus est également très utile :

$$\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$$

Eléments de Mécanique Céleste V0.9

24

Enfin, la formule de Neper donne une résolution aisée pour nombre de problèmes en latitude longitude.

FIGURE 25 – Le pentagone de Neper

Si $\beta = 90^{\circ}$ (*B* est un angle droit) le cosinus d'un des paramètres est égal au produit des sinus coté face et au produit des cotangentes latérales à ce paramètre. Par exemple dans le cas illustré ici :

$$\cos b = \cot A. \cot C. \sin\left(\frac{\pi}{2} - c\right) \sin\left(\frac{\pi}{2} - a\right) \tag{4}$$

Eléments de Mécanique Céleste V0.9

25

3 Rappels de mécanique

Déploie ton jeune courage, enfant ; c'est ainsi qu'on s'élève jusqu'aux astres. [Virgile] (Extrait de L'éneide)

La mécanique classique repose sur un ensemble de postulats qui sont approximativement vrais, en ceci qu'ils décrivent la réalité, c'est à dire l'expérience sensible, avec une précision suffisante pour être utile. En effet, si de nouvelles théories, comme la relativité d'Einstein ont pu remettre en cause la mécanique classique en apportant une précision accrue ou l'explication précise de phénoménes non modélisés, son cadre conceptuel relativement simple à mettre en oeuvre en fait un outil de choix, non seulement de l'ingénieur, mais aussi du scientifique, dans nombre de problèmes de mécanique céleste ou orbitale.

3.1 Principe de déterminisme

Parmi ces principes, se trouve le principe de déterminisme de Newton, qui postule que l'état initial d'un système (i.e. l'ensemble des positions et des vitesses de ses points à une date quelconque) définit de façon unique le futur de son mouvement.

Toutefois, ce principe, formulé par Laplace d'aprés l'analyse critique de Newton, s'entend dans un monde parfait, où l'on connaîtrait parfaitement les conditions initiales du système, conditions initiales pouvant être réelles (au sens mathématique du terme).

En particulier, si l'on considére un système dynamique dont la résolution fait apparaître des solutions fonction d'exponentielles positives, il reste clair qu'au delà d'un certain temps, deux solutions aux conditions initiales infiniment proches finiront tout de même par diverger (voir la conclusion de ce cours)

3.2 Equation de Newton

Dans ces conditions, en partant du principe de Newton, on peut exprimer que l'ensemble du mouvement d'un système est déterminé par sa position $x(t_0) \in \mathbb{R}^N$, et par sa vitesse initiale $v(t_0) \in \mathbb{R}^N$. Cela veut donc dire que l'accélération du système est définie par sa position et sa vitesse initiales.

On peut donc supposer l'existence d'une fonction F telle que

$$F: \begin{cases} \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \\ \ddot{r} = F(r, \dot{r}, \ddot{r}) \end{cases}$$
(5)

Réciproquement, d'après le théorème d'existence et d'unicité de la théorie des équations différentielles ordinaires, la fonction F et les conditions initiales $x(t_0), v(t_0)$ définissent de manière univoque le mouvement à travers l'équation. L'équation (5) est nécessaire et suffisante pour décrire l'ensemble du mouvement. Il s'agit de l'équation de Newton (dans sa reformulation faite par Laplace)

Eléments de Mécanique Céleste V0.9

Si on connaît la position initiale x_0 et la vitesse initiale v_0 , alors l'équation du principe fondamental de la dynamique (PFD) dit que, la force étant F(x, v, t), il suffit de résoudre l'équation différentielle :

$$\ddot{r} = F(r, \dot{r}, t) \operatorname{avec} \begin{cases} r(t_0) = x_0 \\ \dot{r}(t_0) = v_0 \end{cases}$$
(6)

Réciproquement, d'aprés le théorème d'existence et d'unicité de la théorie des équations différentielles ordinaires la fonction F et les conditions initiales $x(t_0)$, $\dot{x}(t_0)$ définissent de manière univoque le mouvement ¹ à travers l'Equation (6). Ainsi nous venons de voir que l'équation (6) est nécessaire et suffisante pour décrire l'ensemble du mouvement. C'est ce qui explique son importance : cette équation a été posée à la base de la mécanique par Newton, dans sa version relue par Laplace. On l'appelle "l'équation de Newton". On en déduit le théorème suivant :

théorème : Soit $(r(t_0) \in \mathbb{R}^N)$ le vecteur position, $(\dot{r}(t_0) \in \mathbb{R}^N)$ le vecteur vitesse d'un système à une date quelconque t_0 alors le mouvement du système à une date $t > t_0$ est décrit de manière univoque par l'Equation de Newton :

$$\ddot{r} = F(r, \dot{r}, t). \tag{7}$$

Dans la pratique, la fonction F dans l'équation (7) est déterminée empiriquement² pour chaque système mécanique concret. D'un point de vue mathématique, la forme de F définit en soit le système.

3.3 Mouvement dans un champ de gravité central

On appelle *chute libre d'un corps sur la Terre*, le mouvement libre d'un corps de masse m (négligeable devant la masse de la Terre) dans le champ de gravité terrestre. En vertu d'une loi empirique établie par Newton, l'accélération d'un objet en chute libre sur la Terre est inversement proportionnelle au carré de la distance au centre de la Terre.

Ainsi, si l'on appelle E^3 l'espace euclidien des configurations (i.e. espace des positions) d'un corps ponctuel et r la fonction $r(t) : \mathbb{R} \longrightarrow E^3$ qui décrit son mouvement, le système mécanique de la chute libre est donné par l'équation suivante :

$$\ddot{r} = -\mu \frac{r}{\|r\|^3}.\tag{8}$$

^{1.} sous réserve de conditions de différentiabilité sur F et de questions d'intervalle de temps sur lequel est définie l'Equation (6). Pour les questions d'intervalle de temps nous supposerons pour simplifier que le mouvement est défini sur l'axe temporel tout entier, ce qui est souvent le cas en mécanique. Pour les questions de différentiabilité nous laisserons au lecteur le soin de les retrouver dans les hypothèses du théorème de Cauchy. Voir [2] par exemple.

^{2.} Comme par exemple par l'égalisation de la masse gravitante $m\vec{g}$ et de la masse inertielle $m\vec{a}$

ISAE - SUPAERO

FIGURE 26 – Chute libre sur un corps central.

3.3.1 Trajectoire dans un champ de gravité central

Dans ce paragraphe, on rappelle que la trajectoire d'un point massique dans un champ de masse central est une conique. On se donne comme hypothèse que l'on se place dans un repère R Galiléen et on ne considère que la force de gravitation sur le système S. L'expression du moment cinétique H en O de m est la suivante

$$\vec{H} = m.\vec{OS} \wedge \left. \frac{\partial.\vec{OS}}{\partial t} \right|_{R} = m\vec{r} \wedge \dot{\vec{r}} \Big|_{R}$$
(9)

D'où sa dérivée

$$\frac{\partial \cdot \vec{H}}{\partial t}\Big|_{R} = \dot{m}\dot{\vec{r}} \wedge \dot{\vec{r}} + m\vec{r} \wedge \ddot{\vec{r}} = \overrightarrow{OM} \wedge \vec{F} = \vec{0}$$
(10)

Car le mouvement est à force centrale. Le moment cinétique est donc constant

$$\vec{H} = m.\vec{r} \wedge \dot{\vec{r}} = \overrightarrow{Cste} \tag{11}$$

et le mouvement est donc plan. Le choix des coordonnées polaires s'impose et donc

$$\vec{v}(M)|_R = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \end{pmatrix}$$
(12)

ainsi que

$$\vec{a}(M)|_{R} = \begin{pmatrix} \ddot{r} - r\dot{\theta}^{2} \\ r\ddot{\theta} + 2\dot{r}.\dot{\theta} \end{pmatrix}$$
(13)

L'équation de Newton nous donne alors

$$m\left(\begin{array}{c} \ddot{r} - r\dot{\theta}^2\\ r\ddot{\theta} + 2\dot{r}.\dot{\theta} \end{array}\right)_R = -G.\frac{m.M}{r^2} \left(\begin{array}{c} 1\\ 0 \end{array}\right)_R \tag{14}$$

Eléments de Mécanique Céleste V0.9

28

Et alors

$$\Rightarrow r\ddot{\theta} + 2\dot{r}.\dot{\theta} = 0 \Rightarrow r^2.\dot{\theta} = cste$$

(15)

Pendant un temps dt l'aire parcourue par le mobile sera $\frac{1}{2}r.(rd\theta)$ et, entre deux dates t_1 et t_2 on retrouve ainsi la fameuse "Loi des Aires"

$$A_{t_1 \to t_2} = \int_{t_1}^{t_2} \frac{1}{2} r.(r\dot{\theta}) dt = K(t_2 - t_1)$$
(16)

Enfin, si l'on pose le changement de variable habituel $u = \frac{1}{r}$ on peut écrire :

$$\dot{r} = \frac{dr}{dt} = \frac{d}{dt}(\frac{1}{u}) = \frac{-1}{u^2} \cdot \frac{du}{dt} = \frac{-C}{d\theta} \cdot dt \cdot \frac{du}{dt} = -C \cdot \frac{du}{d\theta}$$
(17)

et

$$\ddot{r} = \frac{d\dot{r}}{dt} = \frac{d\dot{r}}{d\theta}\frac{d\theta}{dt} = \frac{d}{d\theta}(-C.\frac{du}{d\theta})\frac{d\theta}{dt} = -C\frac{d^2u}{d\theta^2}.\frac{d\theta}{dt} = -C\frac{d^2u}{d\theta^2}.Cu^2 = -C^2u^2\frac{d^2u}{d\theta^2}$$
(18)

L'équation de Newton plus la "Loi des Aires" donnent alors

$$\begin{pmatrix} \ddot{r} - r\dot{\theta}^2 \\ r\ddot{\theta} + 2\dot{r}.\dot{\theta} \end{pmatrix} = -G.\frac{M}{r^2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} | (E1) \\ (E2)$$
(19)

ce qui amène

$$\ddot{r} - r\dot{\theta}^2 = -GMu^2 \text{ d'où } - C^2 u^2 \frac{d^2 u}{d\theta^2} - C^2 u^3 = -GMu^2 \text{ et donc } \frac{d^2 u}{d\theta^2} + u = \frac{GM}{C^2} = \frac{\mu}{C^2}$$
(20)

où l'on reconnaît une équation différentielle du deuxième ordre sous sa forme canonique.

$$u = \frac{\mu}{C^2} (1 + e\cos(\theta - \theta_0))$$
 (21)

avec $p = \frac{C^2}{\mu}$ La solution s'écrit :

$$r = \frac{p}{(1 + e\cos(\theta - \theta_0))} \tag{22}$$

avec θ_0 et *e* constantes d'intégrations. On reconnaît là l'équation d'une conique.

- Si e = 0, il s'agit d'un cercle
- Si e < 1, il s'agit d'une ellipse
- Si e = 1, il s'agit d'une parabole
- Si e > 1, il s'agit d'une hyperbole

Eléments de Mécanique Céleste V0.9

29

FIGURE 27 – Les coniques

FIGURE 28 – Géométrie des ellipses

3.3.2 Géométrie de l'ellipse

On rappelera un certain nombre de relations importantes pour la géométrie des ellipses :

$$\begin{cases} a^{2} = b^{2} + c^{2} \\ e = \frac{c}{a} \\ r_{p} = a (1 - e) = \frac{p}{1 + e} \\ r_{a} = a (1 + e) = \frac{p}{1 - e} \end{cases}$$

avec les notations de la figure 28, on peut écrire :

$$r = \frac{p}{(1 + e\cos(\theta - \theta_0))} = \frac{a(1 - e^2)}{(1 + e\cos(\theta - \theta_0))}$$
(24)

Eléments de Mécanique Céleste V0.9

30

3.3.3 Troisième Loi de Kepler et Energie Totale

Si l'on reprend l'expression de la vitesse en coordonnées cylindriques,

$$\vec{v}(M)|_R = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \end{pmatrix}$$
(25)

alors on peut écrire :

$$V^2 = \dot{r}^2 + r^2 \dot{\theta}^2$$
 (26)

soit

$$V^{2} = C^{2} \left(\frac{du}{d\theta}\right)^{2} + C^{2} u^{2} \operatorname{soit} \left(\frac{du}{d\theta}\right)^{2} + u^{2} = \frac{V^{2}}{C^{2}}$$
(27)

en partant de l'expression de u

$$u = \frac{\mu}{C^2} (1 + e \cos(\theta - \theta_0))$$
(28)

que l'on dérive

$$\frac{du}{d\theta} = -\frac{\mu}{C^2} \cdot e \sin(\theta - \theta_0)) \tag{29}$$

et que l'on exprime au carré,

$$u^{2} = \frac{\mu^{2}}{C^{4}} (1 + 2e\cos(\theta - \theta_{0}) + e^{2}\cos^{2}(\theta - \theta_{0}))$$
(30)

on va pouvoir exprimer

$$\frac{V^2}{C^2} = \left(-\frac{\mu}{C^2}e\sin(\theta - \theta_0))\right)^2 + \frac{\mu^2}{C^4}(1 + 2e\cos(\theta - \theta_0) + e^2\cos^2(\theta - \theta_0))$$
(31)

soit

$$V^{2} = \frac{\mu^{2}}{C^{2}} \left(e^{2} + 1 + 2e\cos(\theta - \theta_{0}) \right) = \frac{\mu^{2}}{C^{2}} \left(e^{2} - 1 + 2\frac{C^{2}u}{\mu} \right)$$
(32)

C'est à dire

$$V^{2} = \mu \left(\frac{2}{r} + \frac{\mu}{C^{2}} \left(e^{2} - 1\right)\right)$$
(33)

Et on retiendra l'expression

$$\frac{V^2}{2} - \frac{\mu}{r} = \frac{\mu^2}{2C^2} \left(e^2 - 1\right)$$
(34)

Cette équation n'est rien d'autre que l'expression de la **conservation de l'énergie totale** pour une particule massique.

En effet, si

$$\overrightarrow{F} = -G\frac{mM}{r^2}\vec{u}$$
(35)

Eléments de Mécanique Céleste V0.9 31 ISAE - SUPAERO

alors on peut écrire

$$\overrightarrow{F} = -m\left(G\frac{M}{r^2}\right)\vec{u} = m\vec{\nabla}U \tag{36}$$

avec

$$U = -G\frac{M}{r} \tag{37}$$

et

$$E_c = \frac{1}{2}mV^2\tag{38}$$

Remarque : on peut écrire l'énergie potentielle du système associé au potentiel gravitationnel U comme

$$E_p = U = -G.\frac{M}{r} = -\frac{\mu}{r}$$
(39)

et si l'on suppose les frottements nuls, il vient :

$$E_c + E_p = \frac{1}{2}V^2 - \frac{\mu}{r} = cste$$
 (40)

3.3.4 Energie et trajectoire

Si l'on reprend les expressions originales :

$$E_M = E_c + E_p = \frac{\mu^2}{2C^2} \left(e^2 - 1\right)$$

et

$$r = \frac{a\left(1 - e^2\right)}{\left(1 + e\cos(\theta - \theta_0)\right)}$$

et si l'on croise les caractéristiques des coniques précédemment décrites, on en déduit l'énergie associée à chaque type de trajectoire.

- Si
$$e > 1$$
, $E_M > 0$: la trajectoire est une hyperbole et $V > \sqrt{\frac{2\mu}{r}}$
- Si $e = 1$, $E_M = 0$: la trajectoire est une parabole et $V = \sqrt{\frac{2\mu}{r}}$
- Si $e < 1$, $E_M < 0$: la trajectoire est une ellipse -un cercle pour e=0- et $V < \sqrt{\frac{2\mu}{r}}$

Remarque 1 : : pour une ellipse,

$$C^2 = \mu a \left(1 - e^2\right) \tag{41}$$

Eléments de Mécanique Céleste V0.9

32

et on peut donc écrire

$$V^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right) \tag{42}$$

relation valable en tout pour de l'orbite !

Remarque 2 : : pour un cercle r = a et l'on peut donc écrire

$$V^2 = \frac{\mu}{a} \tag{43}$$

Remarque 3 : Vitesse de libération La vitesse de libération est la vitesse nécessaire pour échapper à l'attraction du corps central. A une distance r, la trajectoire doit être une parabole (vitesse nulle à l'infini) ou une hyperbole.

$$e \ge 1 \Leftrightarrow E_M \ge 0 \Leftrightarrow V \ge \sqrt{\frac{2\mu}{r}}$$
 (44)

Pour la Terre, $V_L = 11.2 km/s$

3.3.5 Systèmes dérivants d'un potentiel

Notons au passage que si on introduit la fonction énergie potentielle $U: \mathbb{R}^3 \longrightarrow \mathbb{R}$ telle que $U(r) = -\frac{m\mu}{r}$, alors l'équation

$$\ddot{r} = -\mu \frac{r}{\|r^3\|} \tag{45}$$

peut être mise sous la forme habituelle des systèmes potentiels :

$$m\ddot{r} = -\frac{\partial U}{\partial r}.$$
(46)

En généralisant :

Soit $E^{3n} = E^3 \times \ldots \times E^3$ l'espace de configuration d'un système de n points dans un espace euclidien E^3 . Soit $U : E^{3n} \longrightarrow \mathbb{R}$ une fonction différentiable et m_1, \ldots, m_n des nombres positifs.

Le mouvement de n points de masses respectives m_1, \ldots, m_n dans un champ d'énergie potentiel U est régi par le système d'équations différentielles :

$$m_i \ddot{r}_i = -\frac{\partial U}{\partial r_i}, \quad i = 1, \dots, n.$$
 (47)

C'est ce qu'on appelle un système potentiel.

Dans les exemples précédents, les équations du mouvement sont précisément de cette forme. Ont également cette forme la plupart des autres systèmes mécaniques étudiés en mécanique

céleste.

Par exemple on appelle problème à 2 corps de la mécanique céleste le problème (47) dans lequel :

$$U = -K \frac{m_1 m_2}{\|r_1 - r_2\|} \tag{48}$$

(où K est une constante "arbitraire"). Ou encore on appelle problème à 3 corps de la mécanique céleste le problème (47) dans lequel

$$U = -K \frac{m_1 m_2}{\|r_1 - r_2\|} - K \frac{m_2 m_3}{\|r_2 - r_3\|} - K \frac{m_3 m_1}{\|r_3 - r_1\|}$$
(49)

Nota Bene : On peut aussi ramener à la forme (47) un grand nombre de problèmes de toute autre nature que mécanique : les forces électriques ainsi que les champ de vitesse des fluides (sous certaines conditions) découlent d'un potentiel.

3.3.6 Troisième Loi de Kepler

Appelons T la période mise pour parcourir une orbite d'aire S. D'après la loi des aires

$$r^2 \dot{\theta} = C \tag{50}$$

et donc sur une période

$$\int_{O}^{T} r^2 \dot{\theta} dt = C.T \tag{51}$$

On a déjà montré que le mouvement était plan. Si l'on calcule la surface S de l'ellipse parcourue, pendant la période T, il vient :

$$\int_{O}^{T} r^2 \dot{\theta} dt = 2S = CT = 2\pi ab$$
(52)

car bien entendu $2\pi ab$ est l'aire de l'ellipse de demi grand-axe a et de demi petit-axe b. Il vient alors

$$C^2 T^2 = 4\pi^2 a^2 b^2 \tag{53}$$

En reprenant les expressions $C^2 = \mu a \left(1 - e^2\right)$ et $b = a \sqrt{1 - e^2}$ on déduit finalement :

$$\frac{T^2}{a^3} = \frac{4\pi^2}{\mu}$$
 (Troisième loi de Kepler) (54)

Application 1 : Une loi simple donnant la période en années d'une planète du système solaire, d'orbite de demi grand-axe a . Si on exprime T en années et a en Unités Astronomiques (U.A.)

$$T = a^{3/2}$$

Eléments de Mécanique Céleste V0.9

34

Application 2: Masse d'un astéroide binaire. On cherche à donner une méthode pour contrainte la masse de l'astéroïde principal uniquement en utilisant l'observation. Si l'on considère deux objets de masses m et m' autour d'un corps central (Soleil) de masse m_s alors l'équation précédente donne

$$\frac{m+m'}{m+m_S} = \left(\frac{a'}{a}\right)^3 \left(\frac{T}{T'}\right)^2$$

et donc

pour
$$m$$
 et $m' \ll m_S$ il vient $\frac{m}{m_S} \approx \left(\frac{a'}{a}\right)^3 \left(\frac{T}{T'}\right)^2$

L'observation des distances et des périodes du couple va contraindre la masse du premier satellite

3.3.7 Généralisation au cas d'un corps central à symétrie sphérique

Par ailleurs, on rappelle que si le corps central n'est pas un point matériel, mais un corps à symétrie sphérique (éventuellement comprenant plusieurs "couches" comme par exemple une planéte), le mouvement est équivalent au mouvement de la masse totale du corps à symétrie sphérique concentrée en son centre de gravité (Conséquence simple des propriétés du barycentre).

FIGURE 29 – Chute libre sur un corps à symétrie sphérique.

On le montre aisément en considérant le potentiel du champ de gravité créé en un point P(s) par une masse dm du corps central

$$V_P = -G\frac{dm}{q} \tag{55}$$

où G est la constante gravitationnelle et dm un élément de masse infinitésimale.

Le corps central est de symétrie sphérique, aussi on peut sommer le potentiel sur des "coquilles" de densité $\rho(r)$ centrées sur O et retrouver ainsi une expression équivalente au potentiel créé par

Eléments de Mécanique Céleste V0.9 35 ISAE - SUPAERO

une masse identique située au centre de la répartition de masse.

$$U(P) = G \int_{0}^{\pi} \int_{0}^{R} \int_{0}^{2\pi} \frac{\rho}{q} r^2 \sin\theta d\phi dr d\theta$$
(56)

En intégrant par rapport à ϕ (indépendant de ρ)

$$U(P) = 2\pi G \int_{0}^{\pi} \int_{0}^{R} \frac{\rho}{q} r^2 \sin\theta dr d\theta$$
(57)

sachant que

$$q^2 = r^2 + s^2 - 2rs\cos\theta \tag{58}$$

On peut écrire

$$U(P) = 2\pi G \int_{0}^{R} \int_{0}^{\pi} \frac{\rho}{\left[r^2 + s^2 - 2rs\cos\theta\right]^{1/2}} r^2 \sin\theta dr d\theta$$
(59)

Soit

$$U(P) = -2\pi G \int_{0}^{R} \int_{-1}^{1} \frac{\rho}{\left[r^2 + s^2 - 2rsu\right]^{1/2}} r^2 du dr$$
(60)

En écrivant $\sin \theta d\theta = -d \cos \theta$ et si l'on pose $u = \cos \theta$. Comme

$$\int \frac{dx}{\sqrt{a+bx}} = \frac{2\sqrt{a+bx}}{b} \operatorname{car} \rho \text{ est indépendant de } \theta$$
(61)

Le potentiel U s'écrit

$$U(P) = \frac{-2\pi\rho G}{rs} \int_{0}^{R} \left[\sqrt{r^2 + s^2 + 2rs} - \sqrt{r^2 + s^2 + 2rs}\right] r^2 dr$$
(62)

$$U(P) = \frac{-2\pi\rho Gr}{s} \int_{0}^{R} \left[(s+r) - (s-r) \right] dr$$
(63)

ou encore

$$U(P) = \frac{-2\pi G}{s} \int_{0}^{R} \rho r^2 dr$$
(64)

Si l'on note $M = \int_{0}^{R} 4\pi \rho r^2 dr$ où ρ est une distribution de masse radiale, on retrouve

$$U(P) = \frac{GM}{s} \tag{65}$$

l'expression du potentiel crée par une masse pontuelle M au centre de la sphère.

Eléments de Mécanique Céleste V0.9 36 ISAE - SUPAERO
3.3.8 Anomalie Vraie, Anomalie Moyenne, Anomalie Excentrique, Equation de Kepler

Les équations de la trajectoire établies précédemment utilisent le temps comme variable implicite, ce qui évidemment n'est pas toujours pratique.

$$r = \frac{a(1-e^2)}{(1+e\cos(\theta-\theta_0))}$$
(66)

On peut toutefois avoir une relation explicite de la position en fonction du temps à l'aide d'une variable auxiliaire appelée anomalie excentrique (ou hyperbolique, dans le cas d'une hyperbole).

Pour cela, on définit le cercle dans lequel s'incrit l'ellipse que l'on considère. On considère le point $P(r, \theta)$. L'anomalie excentrique E est l'angle de la projection verticale M sur ce cercle du point P. (Voir la figure 30)

FIGURE 30 – L'anomalie vraie est θ , l'anomalie excentrique E.

Quelle relation a-t-on entre E et θ ? Si l'on exprime dans un repère cartésien centré sur O centre de l'ellipse les coodonnées de P(x, y), il vient :

$$\begin{cases} x = a(\cos E - e) \\ y = a\sqrt{1 - e^2}\sin E \end{cases}$$
(67)

d'où en élevant cette dernière équation au carré :

$$r = a \left(1 - e \cos E \right) \tag{68}$$

Par ailleurs on peut écrire

$$\cos\theta = \frac{a\cos E - ae}{r} \tag{69}$$

d'où

$$\cos\theta = \frac{a\cos E - ae}{a(1 - e\cos E)} \tag{70}$$

Eléments de Mécanique Céleste V0.9

37

de cette expression il vient alors

$$\tan\frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}} \cdot \tan\frac{E}{2}$$
(71)

Avant de continuer, on rappelle quelques égalités utiles :

– Mouvement moyen :

$$n = \frac{2\pi}{T}$$

– Constante des aires :

$$r^2\dot{\theta} = C$$

- Conservation de l'énergie :

$$V^2 = \mu\left(\frac{2}{r} - \frac{1}{a}\right)$$

 $\mu = n^2 a^3$

- Troisième Loi de Képler :

$$v^2 = \dot{r}^2 + \left(r\dot{\theta}\right)^2$$

38

En dérivant

$$ae\cos(E) = a - r \tag{72}$$

il vient

$$\frac{dE}{dt} = \frac{V_r}{ae\sin E} = \sqrt{\frac{\mu}{a^3}} \frac{\sin\theta}{\sqrt{1 - e^2\sin\theta}}$$
(73)

or

$$r\sin\theta = b\sin E = a\sqrt{1 - e^2}\sin E \tag{74}$$

donc

$$\sqrt{(1-e^2)}\sin E = \frac{r}{a}\sin\theta = (1-e\cos E)\sin\theta \tag{75}$$

d'où

$$(1 - e\cos E)\frac{dE}{dt} = \sqrt{\frac{\mu}{a^3}}$$
(76)

finalement

$$E - e\sin E = n(t - t_0) \quad avec \quad n = \sqrt{\frac{\mu}{a^3}} \tag{77}$$

L'équation 77 est appelée l'équation de Kepler. L'équation de Képler permet de trouver la position du point P en fonction du temps. Cette équation est transcendantale en E. Elle n'adment donc pas de solution analytique. Toutefois, sa résolution numérique est aisée.

Remarque 1 : La méthode de Newton permet par exemple une convergence rapide. Si l'on note

$$f(E) = E - e\sin E - M \tag{78}$$

la suite sera définie par :

$$E_{i+1} = E_i - \frac{f'(E_i)}{f(E_i)} \text{ pour i = 0,1,2,....}$$
(79)

Remarque 2 : classiquement on utilise les développements de la série

$$E_{i+1} = M + e\sin E_i \tag{80}$$

Les premiers termes du développement de cette série sont :

$$E_{1} = M + e \sin M$$

$$E_{2} = M + e \sin (M + e \sin M) \approx M + e \sin(M) + \frac{e^{2}}{2} \sin(2M)$$

$$E_{3} = M + e \sin \left(M + e \sin M + \frac{e^{2}}{2} \sin(2M)\right)$$

$$\approx M + \left(e - \frac{e^{3}}{8}\right) \sin M + \frac{e^{2}}{2} \sin(2M) + \frac{3}{8}e^{3} \sin(3M)$$

et ainsi de suite

Attention : cette suite diverge pour e>0.6627. Voir l'annexe C pour plus de détails sur les développements en série et les expansions elliptiques.

Eléments de Mécanique Céleste V0.9

39

3.4 Equations de Lagrange

Dans cette section on montre que les n équations Newtoniennes d'un système potentiel de n points matériels qui sont des équations vectorielles sur les positions et les vitesses peuvent s'écrire sous forme de 3n équations Lagrangiennes, qui sont des équations scalaires écrites directement sur les coordonnées généralisées des n points matériels. Deux exemples simples sont donnés.

Reprenons les équations de la dynamique de Newton d'un système potentiel de n points matériels telles que nous les avons posées au problème (47) :

$$m_i \ddot{r}_i + \frac{\partial U}{\partial r_i} = 0 \tag{81}$$

Dans ce système l'énergie potentielle est U = U(r) et l'énergie cinétique est $T = \sum m_i \frac{\dot{r_i}^2}{2}$. De plus les 6n variables $(r_1, \ldots, r_n, \dot{r_1}, \ldots, \dot{r_n})$ sont indépendantes. Introduisons l'application $L: E^{3n} \times E^{3n} \longrightarrow \mathbb{R}$ telle que $L(r, \dot{r}) = T(\dot{r}) - U(r)$. Comme on a :

$$\frac{\partial L}{\partial \dot{r_i}} = \frac{\partial T}{\partial \dot{r_i}} = m_i \dot{r_i}, \quad \frac{\partial L}{\partial r_i} = -\frac{\partial U}{\partial r_i}$$
(82)

On peut écrire l'équation (81) sous la forme :

$$(81) \Longleftrightarrow \frac{d}{dt} (\frac{\partial L}{\partial \dot{r_i}}) - \frac{\partial L}{\partial r_i} = 0$$
(83)

On peut montrer (cf. le principe de moindre d'action de Hamilton dans [1] par exemple) que l'équivalence (83) est vraie quelque soit le système de coordonnées sur l'espace de configuration E^{3n} du système de points matériels. On a alors le théorème suivant :

Théorème : Soient $q = (q_1, ..., q_{3n})$ des coordonnées quelconques sur l'espace de configuration (i.e. espace des positions) d'un système potentiel de n points matériels. Alors les variations de q en fonction du temps obéissent à l'équation d'Euler-Lagrange

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0, \quad L = T - U.$$
(84)

Remarque : Ces équations s'étendent telles quelles, aux cas où T et U dépendent explicitement du temps. Cela peut arriver par exemple lorsque des parties du système ont un mouvement imposé (dans ce cas l'énergie cinétique T dépend explicitement du temps) ou encore pour certains systèmes dissipatifs (dans ce cas U peut dépendre du temps). Ainsi L est plus généralement une fonction de 6n + 1 variables : $L = L(q_1, \ldots, q_{3n}, \dot{q_1}, \ldots, \dot{q_{3n}}, t)$.

Eléments de Mécanique Céleste V0.9

40

3.5 Fonction de Lagrange - Coordonnées généralisées

On appelle $L(q, \dot{q}, t) = T - U$ la fonction de Lagrange

- $-q_i$ les coordonnées généralisées
- $-\dot{q}_i$ les vitesses généralisées
- $-\frac{\partial L}{\partial \dot{q_i}}$ les impulsions généralisées
- $-\frac{\partial L}{\partial q_i}$ les forces généralisées.

Notez ici le changement par rapport aux équations de Newton : il n'est plus question désormais de manipuler des vecteurs positions et de vecteurs vitesses, ni de déterminer les bonnes projections qui permettront de sortir les équations du mouvement dans un jeu de coordonnées judicieux.

Ici les équations sont directement données sur les coordonnées généralisées q qui définissent les positions du système (i.e. l'état du système). Il ne reste donc plus qu'à choisir les coordonnées généralisées les plus adaptées à la description de l'état du système et on a immédiatement sur ces coordonnées les équations du mouvement. Toute la difficulté est reportée sur le changement de variables

Attention cependant à ce qu'on entend par coordonnées généralisées. Pour déterminer la position d'un système de n points matériels dans l'espace, il faut se donner n rayons vecteurs c'est à dire 3n coordonnées cartésiennes. Le nombre de grandeurs scalaires indépendantes qu'il faut se donner pour déterminer de façon univoque la position (i.e. l'état) d'un système est appelé nombre de degrés de liberté du système. Dans le cas présent ce nombre est égal à 3n. Ces grandeurs ne sont pas forcément les coordonnées cartésiennes des points bien sûr, et selon les conditions du problème, le choix d'un autre système de coordonnées peut être plus commode (il peut y avoir des angles, des distances, des produits de distance avec des vitesses etc...). Mais dans tous les cas, il faut absolument que les 3n grandeurs choisies (q_1, \ldots, q_{3n}) caractérisent de manière univoque la position du système. Ces coordonnées (q_1, \ldots, q_{3n}) sont appelées coordonnées généralisées et leurs dérivées $(\dot{q}_1, \ldots, \dot{q}_{3n})$, les vitesses généralisées.

3.6 Equations de Hamilton

La formulation des lois de la mécanique à l'aide de la fonction de Lagrange (et des équations de Lagrange que l'on en déduit) suppose que l'on se donne pour décrire l'état mécanique d'un système, les coordonnées généralisées et les vitesses généralisées de celui ci. Cette méthode n'est pas la seule possible. La description de l'état d'un système à l'aide de ses coordonnées et de ses impulsions généralisées présente aussi de nombreux avantages, notamment pour l'étude de divers problèmes généraux de mécanique. Ce chapitre développe les équations du mouvement (équations de Hamilton) correspondant à cette méthode.

La fonction L de Lagrange, comme on a vu précédemment, est une fonction de 2m variables

Eléments de Mécanique Céleste V0.9

indépendantes q_i et \dot{q}_i . Sa différentielle totale s'écrit de la manière suivante :

$$dL = \sum_{i} \frac{\partial L}{\partial q_i} dq_i + \sum_{i} \frac{\partial L}{\partial \dot{q}_i} d\dot{q}_i$$
(85)

En appelant $p_i = \frac{\partial L}{\partial \dot{q_i}}$ les impulsions généralisées, les équations de Lagrange donnent $\frac{\partial L}{\partial q_i} = \dot{p_i}$. Donc on peut écrire la différentielle totale de L sous la forme :

$$dL = \sum \dot{p_i} dq_i + \sum p_i d\dot{q_i},\tag{86}$$

En développant le deuxiéme terme du membre de droite on obtient :

$$dL = \sum \dot{p_i} dq_i + d(\sum p_i \dot{q_i}) - \sum \dot{q_i} dp_i.$$
(87)

Ceci donne finalement :

$$d(\sum p_i \dot{q}_i - L) = -\sum \dot{p}_i dq_i + \sum \dot{q}_i dp_i.$$
(88)

On appelle la quantité sous le signe différentiel la fonction de Hamilton du système :

$$H(p,q,t) = \sum p_i \dot{q}_i - L \tag{89}$$

Et de l'égalité :

$$dH = -\sum \dot{p_i} dq_i + \sum \dot{q_i} dp_i, \tag{90}$$

dans laquelle les variables indépendantes sont les coordonnées et les impulsions, on tire les équations suivantes :

$$\dot{q_i} = \frac{\partial H}{\partial p_i}, \quad \dot{p_i} = -\frac{\partial H}{\partial q_i}.$$
 (91)

Ce sont les équations de Hamilton. Elles constituent un système de 2m équations du premier ordre à 2m inconnues p(t) et q(t) qui sont équivalentes aux m équations du second ordre obtenues par la méthode de Lagrange. En effet on vient de voir que si les $q_i(t)$ vérifient les les équations de Lagrange alors les couples $(p_i(t), q_i(t))$ vérifient les équations d'Hamilton. La réciproque se démontre de la même manière.

On a donc obtenu le théorème suivant :

Théorème : Soit le système d'équation de Lagrange $\dot{p} = \frac{\partial L}{\partial q}$, où $p = \frac{\partial L}{\partial \dot{q}}$ défini par la fonction de Lagrange

$$L: \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$$
 telle que $L(q, \dot{q}, t) = T - U$

Ce système d'équation est équivalent à un système de 2m équations du premier ordre ou équations de Hamilton :

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$
(92)

Eléments de Mécanique Céleste V0.9

42

où l'application

$$H: \mathbb{R}^{2m} \times \longrightarrow \mathbb{R}$$
 telle que $H(p, q, t) = p\dot{q} - L(q, \dot{q}, t)$

est la fonction de Hamilton³.

A cause de leur simplicité et de leur symétrie, ces équations sont souvent appelées équations canoniques.

3.7 Fonction de Hamilton et énergie

Dans le cadre de la mécanique, comme on l'a vu plus haut, la fonction de Lagrange s'écrit sous la forme L = T - U où l'énergie cinétique T est une forme quadratique en \dot{q} :

$$T = \frac{1}{2} \sum_{i,j} a_{ij} \dot{q}_i \dot{q}_j, \ a_{ij} = a_{ij}(q,t); \quad U = U(q)$$
(93)

On peut sous ces hypothèses, démontrer le théorème suivant (à l'aide du théorème d'Euler sur les fonctions homogènes voir [3] ou [1] pour plus de détails). Cela permet de donner un sens physique à la fonction d'Hamilton :

Théorème : Sous les hypothèses faites au dessus, la fonction de Hamilton H est l'énergie totale :

$$H = T + U \tag{94}$$

Ce théorème de l'équivalence de l'énergie totale avec la fonction de Hamilton entraîne d'importants corollaires. Par exemple, la loi de conservation de l'énergie va alors s'exprimer sous une forme simple :

Corollaire : L'égalité $\frac{dH}{dt} = \frac{\partial H}{\partial t}$ est vérifiée. En particulier pour les systèmes dont la fonction de Hamilton ne dépend pas explicitement du temps ($\frac{\partial H}{\partial t} = 0$), la loi de conservation de la fonction de Hamilton, i.e. de l'énergie, est réalisée :

$$H(q(t), p(t), t) = H(q(t), p(t)) = constante$$

^{3.} Dans les faits on peut montrer que ce résultat est vrai quelque soit L une fonction convexe en \dot{q} et que dans ce cas H est la transformée de Legendre de la fonction de Lagrange considérée comme une fonction de \dot{q} . En mécanique c'est toujours le cas puisque la partie de L = T - U qui dépend de \dot{q} n'est autre que l'énergie cinétique T qui est une forme quadratique définie positive de \dot{q} . Notez cependant par là que ce résultat est général à tous les problèmes variationnels et ne se restreint pas à la mécanique ! Cf [1] pour plus de détails.

Pour montrer ce corollaire, il suffit d'écrire la dérivée de la fonction de Hamilton par rapport au temps dans laquelle on fait intervenir les équations de Hamilton :

$$\frac{d}{dt}H(q(t), p(t), t) = \frac{\partial H}{\partial q}\dot{q} + \frac{\partial H}{\partial p}\dot{p} + \frac{\partial H}{\partial t}$$
(95)

C'est à dire :

$$\frac{dH}{dt} = \frac{\partial H}{\partial q} \left(\frac{\partial H}{\partial p}\right) + \frac{\partial H}{\partial p} \left(-\frac{\partial H}{\partial q}\right) + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}$$
(96)

3.8 Quelques exemples simples

3.8.1 Le pendule simple

Considérons un pendule simple de longueur l, de masse m en mouvement dans un plan.

FIGURE 31 – Pendule simple.

Son mouvement peut être paramétré par un seul angle θ que fait la tige du pendule avec la verticale locale. Cet angle peut varier entre 0 et 2π . Pour le pendule simple l'espace de configuration est de dimension 1 : il peut être complètement paramétré par une seule variable.

Appelons g le module de la force empirique de Newton qui s'applique au pendule. En projetant l'équation de Newton

$$m\ddot{r} = -\frac{\partial U}{\partial r}.$$
(97)

sur la droite perpendiculaire à la tige du pendule on en déduit l'équation du pendule :

$$\ddot{\theta} = -\omega^2 \sin(\theta), \quad \omega = \sqrt{\frac{g}{l}}$$
(98)

La variable la plus naturelle pour ce système est bien sûr θ , l'angle que fait la tige du pendule avec la verticale locale. Comme θ est un angle, il est périodique de période 2π . Donc l'espace de configuration du pendule simple est le cercle : $\mathbb{S} = /2\pi\mathbb{Z}$.

Eléments de Mécanique Céleste V0.9

44

Passons au calcul de l'équation du mouvement par la méthode de Lagrange. L'énergie cinétique du pendule est $T = \frac{1}{2}ml^2\dot{\theta}^2$. Son énergie potentielle est

$$U = mgz = mgl(1 - \cos\theta) \tag{99}$$

Donc le Lagrangien est $L = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta)$. Et l'équation du mouvement sur θ est donnée par l'équation de Lagrange comme suit :

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = 0 \tag{100}$$

C'est à dire l'équation habituelle déjà obtenue ci-dessus

$$\ddot{\theta} + \omega^2 \sin(\theta), \quad \omega = \sqrt{\frac{g}{l}}$$
 (101)

3.8.2 Le problème de Kepler en formalisme de Lagrange

Le problème de Kepler est le problème du mouvement d'un point matériel libre dans un plan, attiré par un champ central selon la loi de Newton. On peut remarquer, en passant, que ce mouvement n'est autre qu'une chute libre (nous avons déjà traité ce cas de la manière "classique" à la section (3.3.1)) puisque le mouvement de la chute libre est plan (du fait de la conservation du moment cinétique). Ici comme le mouvement du point matériel est libre de contraintes et qu'il se fait dans le plan, son espace de configuration est le plan : il est de dimension 2. Comme déjà considéré, les coordonnées naturelles pour étudier ce problème sont les coordonnées polaires car elles s'adaptent très bien à la fois à la planéité du mouvement ainsi qu'à la symétrie du champ central. On utilisera donc les coordonnées $q_1 = r$ et $q_2 = \phi$.

FIGURE 32 – Chute libre sur la Terre en coordonnées polaires.

Le vecteur vitesse \overrightarrow{r} s'écrit dans ces coordonnées :

$$\overrightarrow{r} = \dot{r}e_r + \dot{\phi}re_\phi. \tag{102}$$

Eléments de Mécanique Céleste V0.9

45

Passons au calcul de l'équation du mouvement par la méthode de Lagrange. L'énergie cinétique de la particule s'écrit : $T = \frac{1}{2}m\dot{\vec{r}}^2 = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2)$ et l'énergie potentielle $U(r) = -\frac{m\mu}{r}$. Le Lagrangien s'écrit donc de la manière suivante :

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) + \frac{m\mu}{r}.$$
 (103)

Le mouvement dans les coordonnées (q_1, q_2) est alors donné par les équations de Lagrange sous la forme du système suivant :

$$\begin{cases} m\ddot{r} - mr\dot{\phi}^2 + \frac{m\mu}{r^2} = 0\\ mr^2\ddot{\phi} + 2mr\dot{r}\dot{\phi} = 0 \end{cases}$$
(104)

Eléments de Mécanique Céleste V0.9

4 Problème à deux corps

Le problème à deux corps s'intéresse à l'interaction de deux corps massiques se mouvant sous l'influence d'une attraction mutuelle. Il s'agit du problème techniquement le plus simple que l'on puisse envisager en mécanique céleste, avec des équations dynamiques qui sont intégrables en fonction du temps. La répartition de masse dans le Système Solaire fait que l'on peut utiliser l'approximation à deux corps dans un nombre très important de cas, le plus souvent quand un corps de faible masse orbite autour d'un corps ayant une masse plus importante (Soleil et Planète, Jupiter et ses satellites ...)

Bien évidemment, c'est dans l'approximation à deux corps que l'on démontre le mouvement elliptique des planètes, en une application simple des lois de la dynamique de Newton.

4.1 Approche Képlérienne

 M_1 et M_2 sont les deux corps de masses m_1 et m_2 , de centre d'inertie G. Pour un système isolé, le centre d'inertie G a un mouvement rectiligne uniforme. Le principe de relativité de Galilée permet de choisir G comme origine d'un repére inertiel R_G . En général on préfère pour simplifier choisir comme origine du système de référence un des deux corps.

FIGURE 33 – problème à deux corps

On note

$$\vec{r} = \overrightarrow{M_1 M_2} \quad \vec{r_1} = \overrightarrow{M_1 G} \quad \vec{r_2} = \overrightarrow{GM_2}$$
 (105)

Si l'on applique le principe fondamental de la dynamique :

$$m_1 \frac{d^2 O M_1}{dt^2} = \vec{f}_{12} m_2 \frac{d^2 \overline{O M_2}}{dt^2} = \vec{f}_{21}$$

$$\begin{cases} \frac{d^2}{dt^2} \left(m_1 \overline{O M_1} + m_2 \overline{O M_2} \right) = (m_1 + m_1) \frac{d^2 \overline{O G}}{dt^2} = \vec{f}_{12} + \vec{f}_{21} = \vec{0} \end{cases}$$
(106)

Eléments de Mécanique Céleste V0.9

47

 R_G est galiléen donc

$$m_2 \frac{d^2 \overrightarrow{GM_2}}{dt^2} = \vec{f}_{21} \tag{107}$$

d'où

$$\frac{m_1 m_2}{m_1 + m_2} \frac{d^2 \overline{M_1 M_2}}{dt^2} = \frac{m_1 m_2}{m_1 + m_2} \frac{d^2 \overrightarrow{r}}{dt^2} = \overrightarrow{f}_{21}$$
(108)

Tout se passe comme si un référentiel d'origine M_1 , de directions fixes par rapport au référentiel d'origine O était galiléen pour le mobile M_2 .

On appelle $\mu = \frac{m_1 m_2}{m_1 + m_2}$ la masse réduite. Si $m_2 \ll m_1$ alors le référentiel barycentrique se confond avec M_1 .

Tout se passe comme si le mouvement de chaque particule matérielle était en mouvement dans un champ de force centrale, où le corps central est situé au barycentre des deux masses. On s'est donc ainsi ramené au cas traité au (3.3), pour chacune des particules considérées.

4.2 L'orbite dans l'espace

A un instant t, la trajectoire est complètement déterminée par trois coordonnées de position et trois coordonnées de vitesse. Le vecteur d'état comprend donc 6 paramètres. Dans le cas du mouvement Képlérien, il est plus adapté de décrire la trajectoire du mobile en fonction des caractéristiques géométriques de la conique décrite.

La trajectoire d'un satellite est décrite dans un repère galiléen (non tournant) centré au centre de gravité du corps autour duquel il orbite :

- La Terre pour les satellites terrestre
- Le Soleil pour les sondes interplanétaires durant leur croisière
- Mars pour les sondes martiennes, etc ...

On utilisera donc :

- Un repère géocentrique équatorial pour décrire le mouvement des satellites terrestre
- Un repère héliocentrique écliptique pour celui des sondes interplanétaires

4.3 Rappels sur les coniques

Ce paragraphe rappelle les principales propriétés caractéristiques des coniques, utiles pour comprendre ce qui suit.

- a le demi grand axe, 2a = A
- A est l'apogée, point le plus éloigné du foyer O.A
- P est le périgée, point le plus rapproché du foyer O
- b demi petit axe, b = IB, I est le centre.

Eléments de Mécanique Céleste V0.9

48

FIGURE 34 - Eléments caractéristiques d'une ellipse

- c demi distance focale, c = OI, où O est le foyer actif

- e est l'excentricité avec e = c/a

Quelques autres relations utiles

$$a^{2} = b^{2} + c^{2} \quad e = \frac{c}{a}$$

$$p = a \left(1 - e^{2}\right) b = a \sqrt{1 - e^{2}}$$

$$r_{p} = a \left(1 - e\right) = \frac{p}{1 + e} \quad r_{a} = a \left(1 + e\right) = \frac{p}{1 - e}$$
(109)

4.4 L'orbite dans l'espace

A un instant t, la trajectoire est complètement déterminée par trois coordonnées de position et trois coordonnées de vitesse. Le vecteur d'état comprend donc 6 paramètres. Dans le cas du mouvement Képlérien, il est plus *adapté* de décrire la trajectoire du mobile en fonction des caractéristiques géométriques de la conique décrite.

Par convention, le mouvement est donc exprimé de la manière suivante :

- -a: demi grand axe de l'orbite
- *e* : excentricité de l'orbite
- -i: inclinaison de l'orbite
- Ω : argument du noeud ascendant
- $-\omega$: argument du périgée
- t_0 : instant de passage au périgée (ou τ)
- $-\gamma$: point vernal (direction du soleil le 21 mars à 0h)

Les conventions de signe étant les suivantes :

- Les angles sont positifs dans le sens direct.
- L'orbite est décrite dans le sens direct.
- Le noeud est le noeud ascendant.
- Si $0^{\circ} < i < 180^{\circ}$ et si $i > 90^{\circ}$, l'orbite est rétrograde.

Eléments de Mécanique Céleste V0.9

49

FIGURE 36 - Paramètres orbitaux

4.5 Paramètres cartésiens-paramètres Képlériens

Il est souvent utilse de passer d'un repère cartésien à un repère képlérien .Cette section vise à définir quelques outils utiles pour effectuer ces correspondances.

On définit un repère lié à l'orbite et centré au foyer $(O, \vec{P}, \vec{Q}, \vec{W})$ (ie le centre de la Terre). Avec ces hypothèses \vec{P} est dirigé de O vers le périgée \vec{W} est un vecteur unitaire normal à l'orbite et $\vec{Q} = \vec{W} \wedge \vec{P}$ est dans le plan de l'orbite. Si l'on note également (X, Y, Z) les coordonnées de S dans le repère géocentrique équatorial (galiléen) et(x, y, z) les coordonnées de S dans le repère lié à l'orbite (non galiléen), alors

Si l'on rappelle qu'aux rotations d'angle θ autour des axes X et Z sont associées e les matrices de passage $R_X(\theta)$ et $R_Z(\theta)$ ainsi définies :

$$R_Z(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & \sin\theta\\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$
(110)

Eléments de Mécanique Céleste V0.9

50

FIGURE 37 - On se place en repère orbital local

et

$$R_Z(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(111)

4.6 Passage passage d'un repère orbital vers un repère Galiléen

Ces résultats rappelés, on peut écrire la Matrice de passage d'un repère orbital vers un repère Galiléen de la manière suivante :

$$(X,Y,Z)|_{R_G} = (x,y,z)|_{R_O} \underbrace{ \begin{bmatrix} \cos\omega & \sin\omega & 0\\ -\sin\omega & \cos\omega & 0\\ 0 & 0 & 1 \end{bmatrix}}_{A_\omega} \cdot \underbrace{ \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos i & \sin i\\ 0 & -\sin i & \cos i \end{bmatrix}}_{A_i} \cdot \underbrace{ \begin{bmatrix} \cos\Omega & \sin\Omega & 0\\ -\sin\Omega & \cos\Omega & 0\\ 0 & 0 & 1 \end{bmatrix}}_{A_\Omega} \underbrace{ \begin{bmatrix} \cos\Omega & \sin\Omega & 0\\ -\sin\Omega & \cos\Omega & 0\\ 0 & 0 & 1 \end{bmatrix}}_{A_\Omega}$$

4.6.1 Passage au repère orbital local

On travaille souvent dans le repère orbital local $(\vec{R},\vec{W},\vec{S})$

- $-\vec{R}$: vecteur unitaire porté par le rayon vecteur r $-\vec{W}$: un vecteur unitaire parallèle au moment cinétiquee $-\vec{S}$: complétant le trièdre

$$(X, Y, Z)|_{R_{G}} = (x, y, z)|_{R_{ol}} \quad \cdot \begin{bmatrix} \cos(\omega + \theta) & \sin(\omega + \theta) & 0\\ -\sin(\omega + \theta) & \cos(\omega + \theta) & 0\\ 0 & 0 & 1 \end{bmatrix} \} A_{\omega + \theta}$$
$$\cdot \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos i & \sin i\\ 0 & -\sin i & \cos i \end{bmatrix} \} A_{i}$$
(113)
$$\cdot \begin{bmatrix} \cos\Omega & \sin\Omega & 0\\ -\sin\Omega & \cos\Omega & 0\\ 0 & 0 & 1 \end{bmatrix} \} A_{\Omega}$$

Eléments de Mécanique Céleste V0.9

52

newpage

5 Le problème à trois corps restreint

Contrairement au problème à deux corps, et malgré son apparence simple, le problème à trois corps n'admet pas de solution analytique. Tous les efforts pour le réduire, par tout ce que la Science a compté de grandes figures (on peut citer Euler, Lagrange, Laplace, Jacobi, le Verrier, Hamilton qui se sont attaqués au problème ...) sont restés vains, et seules un certain nombre de configurations exotiques admettent des solutions intégrables :

- Le problème de Copenhague (deux masses égales)

- Le Problème de Pythagore (3 corps dans un rapport de masse 3 :4 :5)

Toutefois, l'arrivée des calculateurs et des méthodes d'intégration numérique a bien fait bouger les lignes. On peut maintenant, sur d'assez longues périodes, intégrer numériquement les équations différentielles du mouvement.

Toutefois il reste un cas particulier, où l'on peut effectuer des simplifications analytiques : c'est le cas où la masse de l'un des corps est négligeable devant les deux autres. On parle de **problème à trois corps restreint**.

5.1 Introduction - hypothèses

Au premier abord le problème à trois corps circulaire, restreint, où les trajectoires des corps considérés sont circulaires, et où la masse d'un des trois corps est négligeable devant les autres, semble très restrictif. En pratique, la hiérarchie des masses dans le Système Solaire (cf 1.4.2) fait que cette approximation donne de bons résultats, pertinents pour une classe très importante de problèmes.

Premier jeu d'hypothèses : les corps sont considérés comme des masses ponctuelles $m \ll m_1$ et $m \ll m_2$.

Dans ces conditions, P n'a pas d'effet sur P_1 et P_2 . On peut donc supposer que (P_1, P_2) est un système isolé à deux corps, identique à celui utilisé dans le paragraphe 4.1. On se ramène donc au cas précédent, et l'on va traiter le problème dans un référentiel (O, X, Y, Z) lié au centre de masse de P_1 et P_2 ; ce référentiel est galiléen.

Le moment cinétique du système est constant. D'où

$$\vec{H} = m_1 \vec{r_1} \wedge \frac{d\vec{r_1}}{dt} + m_2 \vec{r_2} \wedge \frac{d\vec{r_2}}{dt} = \overrightarrow{Cste} \quad \text{avec} \quad m_1 \vec{r_1} + m_2 \vec{r_2} = \vec{0}$$
(114)

Les moments cinétiques de P_1 et P_2 sont constants et parallèles.

$$\vec{H}_1 = m_1 \vec{r}_1 \wedge \frac{d\vec{r}_1}{dt} = \frac{m_2}{m_1 + m_2} \vec{H} \quad \vec{H}_2 = m_2 \vec{r}_2 \wedge \frac{d\vec{r}_2}{dt} = \frac{m_1}{m_1 + m_2} \vec{H}$$
(115)

 P_1 et P_2 évoluent dans le même plan (O, X, Y)

Eléments de Mécanique Céleste V0.9

53

Deuxième jeu d'hypothèses : les orbites des points P_1 et P_2 sont supposées être circulaires. Cette condition, qui peut sembler restrictive, s'applique de fait à de nombreuses situations en Mécanique Céleste, comme par exemple le couple Terre-Lune, Terre Soleil, Soleil Jupiter : les excentricités des orbites des planètes sont faibles. On considère donc un point M de masse m, m(M) étant négligeable devant m_1 et m_2 .

FIGURE 38 – Dans le repère tournant

Dans un repère galiléen (O, X, Y, Z), on peut écrire :

$$\frac{d^2 \vec{r}}{dt^2} = -G \frac{m_1}{r_1^3} \vec{r}_1 + -G \frac{m_2}{r_2^3} \vec{r}_2$$
(116)

Pour s'affranchir des mouvements des corps principaux P_1 et P_2 on écrira le mouvement de M dans un repère tournant lié à P_1 et P_2 . On définit $\vec{\Omega} = \Omega.\vec{e_z}$ la rotation instantanée de R_{Ω} par rapport à R_G . Compte tenu des hypothèses précédentes, on peut écrire $\vec{\Omega} = \Omega.\vec{e_z}$ avec $\vec{\Omega}$ de direction inertielle et de norme constante.

Notation : on écrira

$$\frac{\delta\left(\right)}{\delta t} = \left.\frac{\delta\left(\right)}{\delta t}\right|_{R_{\Omega}} \tag{117}$$

la dérivée par rapport au temps dans le repère tournant ainsi défini.

Si l'on considère la dérivée dans R_G

$$\left. \frac{d\left(\vec{r}\right)}{dt} \right|_{R_G} = \left. \frac{\delta\left(\vec{r}\right)}{\delta t} \right|_{R_\Omega} + \vec{\Omega} \wedge \vec{r} \tag{118}$$

$$\frac{d^2\left(\vec{r}\right)}{dt^2}\Big|_{R_G} = \left.\frac{\delta^2\left(\vec{r}\right)}{\delta t^2}\right|_{R_\Omega} + 2\vec{\Omega} \wedge \left.\frac{\delta\left(\vec{r}\right)}{\delta t}\right|_{R_\Omega} + \vec{\Omega} \wedge \left(\vec{\Omega} \wedge \vec{r}\right) \tag{119}$$

Eléments de Mécanique Céleste V0.9

54

et donc

$$\frac{\delta^2\left(\vec{r}\right)}{\delta t^2}\Big|_{R_{\Omega}} = -G\frac{m_1}{r_1^3}\vec{r}_1 + -G\frac{m_2}{r_2^3}\vec{r}_2 - 2\vec{\Omega}\wedge\frac{\delta\left(\vec{r}\right)}{\delta t}\Big|_{R_{\Omega}} - \vec{\Omega}\wedge\left(\vec{\Omega}\wedge\vec{r}\right)$$
(120)

De cette expression on déduit

$$\frac{\delta^2\left(\vec{r}\right)}{\delta t^2}\Big|_{R_{\Omega}} = -\vec{\nabla}U - 2\vec{\Omega} \wedge \left.\frac{\delta\left(\vec{r}\right)}{\delta t}\right|_{R_{\Omega}}$$
(121)

avec

$$\begin{cases} \vec{\nabla}U = \overrightarrow{grad}U\\ U = -G\left(\frac{m_1}{r_1} + \frac{m_2}{r_2}\right) - \frac{1}{2}\Omega^2\left(x^2 + y^2\right) \end{cases}$$
(122)

Si on projette cette dernière équation dans R_{Ω} sur la vitesse $\frac{\delta(\vec{r})}{\delta t}\Big|_{R_{\Omega}}$ on peut écrire

$$\frac{\delta\left(\vec{r}\right)}{\delta t}\Big|_{R_{\Omega}} \cdot \frac{\delta^{2}\left(\vec{r}\right)}{\delta t^{2}}\Big|_{R_{\Omega}} = -\vec{\nabla}U \cdot \left.\frac{\delta\left(\vec{r}\right)}{\delta t}\right|_{R_{\Omega}}$$
(123)

et donc

$$\vec{\nabla}U. \left.\frac{\delta\left(\vec{r}\right)}{\delta t}\right|_{R_{\Omega}} = \left(\begin{array}{c}\frac{\partial U}{\partial x}\\\frac{\partial U}{\partial y}\\\frac{\partial U}{\partial z}\end{array}\right) \cdot \left(\begin{array}{c}\frac{dx}{dt}\\\frac{dy}{dt}\\\frac{dz}{dt}\end{array}\right)_{R_{\Omega}} = \frac{dU}{dt}$$
(124)

alors

$$\left(\frac{\delta\left(\vec{r}\right)}{\delta t}\Big|_{R_{\Omega}}\right)^{2} + 2U = -C \quad ie \quad V^{2} + 2U = -C \tag{125}$$

Quelques remarques sur cette fonction U

- Tout d'abord la constante C est une fonction des conditions initiales du mouvement
- U fonction de x, y, z dans le repère tournant
- U n'est PAS un potentiel
- La constante C est fonction des conditions initiales

5.2 Intégrale de Jacobi

L'expression $V^2 + 2U = -C$ s'appelle Intégrale de Jacobi, ou Constante de Jacobi. On l'appelle parfois l'intégrale de l'énergie relative Attention ! *Ce n'est pas une intégrale du mouvement* car *ni l'énergie,ni le moment angulaire ne sont conservés*. On ne peut pas l'utiliser pour intégrer le mouvement, mais elle fournit tout de même des informations importantes.

Eléments de Mécanique Céleste V0.9

Exemple 1 : Surfaces de vitesse nulle L'intérêt de la constante de Jacobi peut s'apprécier simplement en considérant les surfaces où la vitesse de la particule est zéro.

$$C + 2U = 0 \tag{126}$$

Si l'on se restreint au plan du mouvement, l'intersection des courbes à iso-constante de Jacobi donne un ensemble de courbes « de vitesse nulle » Si le problème n'est pas intégrable, Ces courbes permettent de définir les zones accessibles par la particule (ou bien les régions exclues) Les surfaces à vitesse nulle ou *Surfaces de Hill* limitent les trajectoires admissibles de P

$$-2U \geqslant C \tag{127}$$

En particulier on peut déterminer les zones accessibles en fonction des conditions initiales de la particule.

Si l'on introduit des variables adimensionnelles pour simplifier la résolution :

$$\vec{\tilde{r}} = \frac{\vec{r}}{\|\vec{r}\|} \quad \vec{\tilde{r}}_1 = \frac{\vec{r}_1}{\|\vec{r}\|} \quad \vec{\tilde{r}}_2 = \frac{\vec{r}_2}{\|\vec{r}\|} \quad \mu = \frac{m_2}{m_1 + m_2} \quad et \quad \tilde{t} = t\sqrt{\frac{G(m_1 + m_2)}{\|\vec{r}\|^3}} = \Omega t \quad (128)$$

Les surfaces à vitesse nulle vérifient :

$$\tilde{x}^{2} + \tilde{y}^{2} + 2\frac{\mu}{\tilde{r}_{2}} + 2\frac{(1-\mu)}{\tilde{r}_{1}} = C \quad avec \begin{cases} \tilde{r}_{1} = \left[(\mu+\tilde{x})^{2} + \tilde{y}^{2} + \tilde{z}^{2}\right]^{1/2} \\ \tilde{r}_{2} = \left[(\tilde{x} - (1-\mu))^{2} + \tilde{y}^{2} + \tilde{z}^{2}\right]^{1/2} \end{cases}$$
(129)

Les applications du problème à trois corps restreint sont nombreuses. A titre d'illustration, nous décrirons les trajectoires admissibles dans le système Terre Lune en fonction de la vitesse initiale de l'objet considéré, ainsi que les points de Lagrange.

Eléments de Mécanique Céleste V0.9

56

Exemple 1 : Trajectoires du système Terre-Lune On peut ainsi décrire les trajectoires du système Terre-Lune accessibles par un véhicule spatial, en fonction de son énergie initiale.

FIGURE 39 - Courbes à ISO Jacobien

Exemple 2 : Les points de Lagrange Le tracé des surfaces à vitesse nulle fait apparaître 5 zones où le gradient du potentiel U est nul. Ces cinq points sont solutions de l'équation

$$\overrightarrow{\nabla}U = \overrightarrow{0} \tag{130}$$

FIGURE 40 – Position des points de Lagrange du système Terre Soleil - II en existe de similaires pour les systèmes Terre Lune, Jupiter Soleil, etc ...

Eléments de Mécanique Céleste V0.9

57

On montre que ces points sont des points d'équilibre dans le repère tournant. On montrera dans les sections suivantes que, si les points L1, L2 et L3 sont des points d'équilibre instables, les points L4 et L5 sont stables.

5.3 Position des points de Lagrange L4 et L5 - Approche géométrique

Ce paragraphe vise à donner une première approche de la localisation des points de Lagrange 4 et 5, dans le cas simple du problème circulaire restreint.

Soient 2 corps M_1 et M_2 de masses m_1 et m_2 , O le centre de gravité de ces deux masses. P est un point de masse m négligeable par rapport à m_1 et m_2 . On se place dans le repère tournant autour de O défini précedemment. On note également $\vec{a} = M_1 P$, $\vec{c} = M_2 P$ et $\vec{a} = OP$.

Soit $\vec{F_1}$ la force exercée par M_1 sur P et $\vec{F_2}$ la force exercée par M_2 sur P. Notons $\vec{F} = \vec{F_1} + \vec{F_2}$.

FIGURE 41 – Bilan des forces aux points de Lagrange L4 et L5

Les propriétés du barycentre nous permettent d'écrire

$$\vec{b} = \frac{m_1 \vec{a} + m_2 \vec{c}}{m_1 + m_2} \text{ ie } m_1 \left(\vec{a} - \vec{b} \right) = m_2 \left(\vec{b} - \vec{c} \right)$$
(131)

Si l'on multiplie cette expression par $\vec{F_1} + \vec{F_2}$ alors il vient :

$$m_2\left(\vec{F}_1 \wedge \vec{c}\right) + m_1\left(\vec{F}_2 \wedge \vec{a}\right) = 0 \tag{132}$$

d'où l'on en déduit $m_2 \cdot F_1 \cdot c + m_1 \cdot F_2 \cdot a = 0$.

Dans le cas de forces gravitationnelles,

$$F_1 = G \frac{m_1}{a^2}$$
 et $F_2 = G \frac{m_2}{c^2}$ (133)

Et donc a = c, le triangle où se situe les points d'équilibre est donc *isocèle*.

$$m_2 \cdot F_1 \cdot c + m_1 \cdot F_2 \cdot a = 0 \tag{134}$$

Eléments de Mécanique Céleste V0.9

58

FIGURE 42 – Notations points de Lagrange L4 et L5

La deuxième condition pour que le point soit en équilibre est que l'accélération centrifuge qui s'exerce sur une particule au point *P* compense l'accélération des deux masses test.

$$n^2 b = F_1 \cos\beta + F_2 \cos\gamma \tag{135}$$

avec les notations de la figure 41. On en déduit

$$n^2 = \frac{G}{a^2 b^2} (m_1 b \cos\beta + m_2 b \cos\gamma) \tag{136}$$

En inspectant les triangles (O, P, M_1) et (O, P, M_2) il vient :

$$b\cos\beta = a - r_1\cos\alpha$$

$$b\cos\gamma = a - (d - r_1)\cos\alpha$$
(137)

or

$$\cos \alpha = \frac{d}{2a} \operatorname{et} \mathbf{r}_1 = \frac{m_2}{m_1 + m_2} d \tag{138}$$

et donc

$$n^{2} = \frac{G(m_{1} + m_{2})}{a^{3}b^{2}} \left(a^{2} - \frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}}d^{2}\right)$$
(139)

comme $b^2 = a^2 + r_1^2 - 2ar_1 \cos \alpha$ Alors :

$$b^2 = a^2 - \frac{m_1 m_2}{(m_1 + m_2)^2} d^2 \tag{140}$$

On déduit de 139 et de 140 :

$$n^2 = G \frac{(m_1 + m_2)}{a^3} \tag{141}$$

Eléments de Mécanique Céleste V0.9

59

Par ailleurs le problème à deux corps contraint la vitesse de rotation de l'ensemble et donc :

$$n^2 = G \frac{(m_1 + m_2)}{d^3} \tag{142}$$

D'où a = d. Le système a donc un point d'équilibre situé à l'apex d'un triangle équilatéral avec une base formée par la ligne joignant les deux masses. Par symétrie en en déduit l'existence des deux points L4 et L5.

Application : les astéroïdes troyens. La figure 43 représente le Système Solaire interne, jusqu'à Jupiter. Le dessin comprend également la ceinture d'astéroïdes principale (le blanc nuage en forme de beignet), les Hildas ("triangle" orange juste à l'intérieur de l'orbite de Jupiter) et les Troyens (le vert). Le groupe d'astéroïdes qui précède Jupiter est appelé "les Grecs" et le groupe d'astéroïdes qui suit Jupiter est appelé "les Troyens". Ces astéroïdes sont situés approximativement aux sommets d'un triangle équilatéral ayant pour base le segment Jupiter-Soleil.

5.4 Position des points de Lagrange - Cas général

Si le problème à trois corps n'est pas intégrable, on peut toutefois trouver un certain nombre de solutions particulières. Continuons donc la recherche des points où la vitesse et l'accélération d'une particule sont nuls dans le référentiel tournant (synodique). Supposons de plus que le mouvement est confiné dans le plan x - y.

Réécrivons le potentiel U sous une forme différente. On rappelle que

$$\mu = \frac{m_2}{m_1 + m_2} \tag{143}$$

et on notera de plus $\mu_1 = Gm_1 = 1 - \mu$ ainsi que $\mu_2 = Gm_2 = \mu$ avec ces définitions. Si n est le mouvement moyen du système en rotation, les équations du mouvement peuvent s'écrire :

$$\begin{cases} \ddot{x} - 2n\dot{y} = \frac{\partial U}{\partial x} \\ \ddot{y} - 2n\dot{x} = \frac{\partial U}{\partial y} \\ \ddot{z} = \frac{\partial U}{\partial z} \end{cases} \text{ avec } U = \frac{n^2}{2} \left(x^2 + y^2 \right) + \frac{\mu_1}{r_1} + \frac{\mu_2}{r_2}$$
(144)

A partir des définitions de r_1 et r_2 , il vient $\mu_1 r_1^2 + \mu_2 r_2^2 = x^2 + y^2 + \mu_1 \mu_2$. On peut alors exprimer le potentiel U sous la forme suivante :

$$U = \mu_1 \left(\frac{1}{r_1} + \frac{r_1^2}{2}\right) + \mu_2 \left(\frac{1}{r_2} + \frac{r_2^2}{2}\right) - \frac{1}{2}\mu_1\mu_2$$
(145)

L'avantage de cette expression est qu'elle ne dépend plus explicitement ni de x ni de y, ce qui va nous simplifier les dérivations partielles.

Si l'on reprend l'équation du mouvement 144 en cherchant les points d'équilibre, c'est à dire $\dot{x} = \dot{y} = 0$ et $\ddot{x} = \ddot{y} = 0$ on obtient les conditions suivantes :

$$\frac{\partial U}{\partial x} = \frac{\partial U}{\partial r_1} \frac{\partial r_1}{\partial x} + \frac{\partial U}{\partial r_2} \frac{\partial r_2}{\partial x} = 0$$
(146)

Eléments de Mécanique Céleste V0.9

60

FIGURE 43 – Le Système Solaire interne, entre le Soleil et Jupiter, d'après une figure de Wikipédia Commons, basée sur les ephémérides JPL. On notera la configuration en triangle équilatéral de la position des amas d'astéroïdes

$$\frac{\partial U}{\partial y} = \frac{\partial U}{\partial r_1} \frac{\partial r_1}{\partial y} + \frac{\partial U}{\partial r_2} \frac{\partial r_2}{\partial y} = 0$$
(147)

Une simple inspection des équations 146 et 147 donne dans un premier temps l'existence de deux solutions triviales

$$\frac{\partial U}{\partial r_1} = 0 \text{ et } \frac{\partial U}{\partial r_2} = 0 \tag{148}$$

Ce qui donne

$$\frac{\partial U}{\partial r_1} = \mu_1 \left(-\frac{1}{r_1^2} + r_1 \right) = 0 \text{ et aussi} \quad \frac{\partial U}{\partial r_2} = \mu_1 \left(-\frac{1}{r_2^2} + r_2 \right) = 0 \tag{149}$$

Eléments de Mécanique Céleste V0.9

61

on en déduit :

$$(x + \mu_2)^2 + y^2 = 1$$
 ainsi que $(x - \mu_1)^2 + y^2 = 1$ (150)

ce qui donne facilement les deux solutions triviales :

$$\left(\mathbf{x} = \frac{1}{2} - \mu_2, y = \pm \frac{\sqrt{3}}{2}\right) \tag{151}$$

On retrouve bien là les résultats du paragraphe précédent. Par convention, le point L_4 est le point en avant du mouvement et le point L_5 est le point en arrière du mouvement de rotation.

Si l'on reprend les équations 146 et 147 en les exprimant en fonction des paramètres r_1, r_2 , x, y il vient également :

$$\mu_1 \left(-\frac{1}{r_1^2} + r_1 \right) \frac{x + \mu_2}{r_1} + \mu_2 \left(-\frac{1}{r_2^2} + r_2 \right) \frac{x - \mu_1}{r_2} = 0$$
(152)

$$\mu_1 \left(-\frac{1}{r_1^2} + r_1 \right) \frac{y}{r_1} + \mu_2 \left(-\frac{1}{r_2^2} + r_2 \right) \frac{y}{r_2} = 0 \tag{153}$$

De la même façon, l'examen de l'équation 153 montre que y = 0 est une solution simple et que les points d'équilibre restant sont situés le long de l'axe des x, et vérifient 152. On note ces solutions les points L_1 , L_2 et L_3 . Le point L_1 est situé entre les masses M_1 et M_2 , le point L_2 est situé au delà de la masse M_2 et le point L_3 a une abcisse négative sur l'axe des x.

Position du point L_1 :

Au point L_1 , il vient :

$$r_1 + r_2 = 1$$
, $r_1 = x + \mu_2$, $r_2 = -x + \mu_1$ et $\frac{\partial r_1}{\partial x} = -\frac{\partial r_2}{\partial x} = 1$ (154)

qui donne, en combinant avec l'équation 152

$$\mu_1 \left(-\frac{1}{\left(1 - r_2\right)^2} + 1 - r_2 \right) - \mu_2 \left(-\frac{1}{r_2^2} + r_2 \right) = 0$$
(155)

Soit encore :

$$\frac{\mu_2}{\mu_1} = 3r_2^3 \frac{\left(1 - r_2 + \frac{1}{3}r_2^2\right)}{\left(1 + r_2 + r_2^2\right)\left(1 - r_2\right)^3}$$
(156)

Cette équation n'a malheureusement pas de solution explicite, mais une solution peut lui être trouvée soit numériquement, soit à l'aide d'un développement en série. Si l'on note :

$$\alpha = \left(\frac{\mu_2}{3\mu_1}\right)^{1/3} \tag{157}$$

Eléments de Mécanique Céleste V0.9

62

Il vient :

$$r_2 = \alpha - \frac{1}{3}\alpha^2 - \frac{1}{9}\alpha^3 - \frac{23}{81}\alpha^4 + O(\alpha^5) \text{ avec } x = \mu_1 - r$$
(158)

De la même façon, au point L_2 ,

$$r_1 - r_2 = 1$$
, $r_1 = x + \mu_2$, $r_2 = x - \mu_1$ et $\frac{\partial r_1}{\partial x} = \frac{\partial r_2}{\partial x} = 1$ (159)

Soit encore :

$$\frac{\mu_2}{\mu_1} = 3r_2^3 \frac{\left(1 - r_2 + \frac{1}{3}r_2^2\right)}{\left(1 + r_2^2\right)\left(1 - r_2^3\right)}$$
(160)

En utilisant la même définition de α , on peut également écrire

$$r_2 = \alpha + \frac{1}{3}\alpha^2 - \frac{1}{9}\alpha^3 - \frac{31}{81}\alpha^4 + O\left(\alpha^5\right)$$
(161)

Enfin, au point L_3 ,

$$r_2 - r_1 = 1$$
, $r_1 = -x - \mu_2$, $r_2 = -x + \mu_1$ et $\frac{\partial r_1}{\partial x} = \frac{\partial r_2}{\partial x} = -1$ (162)

d'où en en déduit :

$$\frac{\mu_2}{\mu_1} = \frac{\left(1 - r_1^3\right)\left(1 + r_1^2\right)}{r_1^3\left(r_1^2 + 3r_1 + 3\right)} \tag{163}$$

5.5 Critère de Tisserand.

On se place dans le problème à trois corps restreint tel que nous l'avons déjà décrit dans 5.2. On exprime le principe fondamental de la dynamique sur le corps de masse négligeable, dans le repère tournant lié à $\overrightarrow{P_1P_2}$ et l'on retrouve l'expression maintenant bien connue

$$\frac{\delta^2\left(\vec{r}\right)}{\delta t^2}\Big|_{R_{\Omega}} = -G\frac{m_1}{r_1^3}\vec{r}_1 + -G\frac{m_2}{r_2^3}\vec{r}_2 - 2\vec{\Omega}\wedge\frac{\delta\left(\vec{r}\right)}{\delta t}\Big|_{R_{\Omega}} - \vec{\Omega}\wedge\left(\vec{\Omega}\wedge\vec{r}\right)$$
(164)

En intégrant cette expression, il vient

$$\left(\frac{\delta\left(\vec{r}\right)}{\delta t}\Big|_{R_{\Omega}}\right)^{2} + 2U = -C \quad ie \quad V^{2} + 2U = -C \tag{165}$$

et on retrouve l'expression de la constante de Jacobi

$$V^2 + 2U = -C \tag{166}$$

On peut exprimer cette constante de Jacobi dans les coordonnées du repère tournant (x, y, z)

$$\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = x^2 + y^2 + \frac{2(1-\mu)}{r_1} + \frac{2\mu}{r_2} - C$$
(167)

Eléments de Mécanique Céleste V0.9

63

Si on l'exprime dans les coordonnées du repère non tournant (ξ, η, ζ) (c'est à dire par exemple dans le repère héliocentrique) il vient :

$$\dot{\xi}^2 + \dot{\eta}^2 + \dot{\zeta}^2 - 2\left(\xi\dot{\eta} - \eta\dot{\xi}\right) = \frac{2\left(1 - \mu\right)}{r_1} + \frac{2\mu}{r_2} - C \tag{168}$$

On dès lors utiliser les invariants classiques du mouvement. En particulier, si l'on considère un corps de paramètres Képlériens (a, i, e ...) on peut écrire :

$$\xi^2 + \eta^2 + \zeta^2 = \frac{2}{r} - \frac{1}{a} \tag{169}$$

ainsi que

$$\dot{\xi}\eta - \xi\dot{\eta} = \sqrt{a\left(1 - e^2\right)}\cos i \tag{170}$$

L'expression 166 devient alors :

$$\frac{2}{r} - \frac{1}{a} - 2\sqrt{a(1-e^2)}\cos i = 2\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right) - C$$
(171)

Si l'on considère par exemple que l'on est proche du corps 1 (Par exemple comète proche de Jupiter ...) $\frac{1}{r^2}$ est négligé et l'expression devient :

$$\frac{1}{a} + 2\sqrt{a(1-e^2)}\cos i = cste$$
(172)

C'est ce que l'on appelle la constante de Tisserand. Historiquement, ce critère a permis de savoir si une comète nouvelle pouvait s'identifier à une comète anciennement observée, même si l'orbite de celle-ci avait subi entre-temps de grandes perturbations due au passage près d'une planète telle que Jupiter.

NB : François-Félix Tisserand est né le 15 janvier 1845 à Nuits-Saint-Georges. C'est Le Verrier qui fait nommer comme astronome adjoint, en 1866, cet agrégé sortant de l'École normale supérieure : il lui demande d'étudier la théorie de la Lune de Delaunay, avec l'espoir - qui fut déçu - que le jeune mathématicien y décèlerait des erreurs... L'oeuvre capitale de Tisserand est son Traité de mécanique céleste [13], publié entre 1889 et 1896. Ses propres travaux sont incorporés à cette somme des connaissances de l'époque qui, par sa précision et son élégante clarté, forme encore de nos jours la base de l'enseignement de la mécanique céleste classique.

Eléments de Mécanique Céleste V0.9

FIGURE 44 – Changement d'orbite d'une comète hypothétique après que son orbite ait été perturbée par Jupiter. La rencontre provoque d'importants changements de paramètres orbitaux, mais laisse inchangé le critère de Tisserand.

5.6 Mouvement autour des points de Lagrange L4 et L5

Il ne suffit pas de savoir qu'il existe des points d'équilibre stables pour le problème restreint à trois corps. Un point évidemment intéressant est l'étude de la stabilité de ces points, et des trajectoires d'un point matériel autour de ces points particuliers. On peut étudier la stabilité de ces points en considérant des "petits" mouvements autour des points d'équilibre.

En reprenant les équations 144, on se place à proximité d'un point d'équilibre que l'on notera (x_{L_i}, y_{L_i}) . Si l'on considère un petit déplacement (X, Y) autour de ce point L, on peut substituer dans 146 et 147 et effectuer un développement en série autour de (x_{L_i}, y_{L_i}) . Dans ce cas, comme

$$\left(\frac{\partial U}{\partial x}\right)_{L_i} = \left(\frac{\partial U}{\partial y}\right)_{L_i} = 0 \tag{173}$$

il vient :

$$\ddot{X} - 2n\dot{Y} \approx \left(\frac{\partial U}{\partial x}\right)_{L_i} + X\left(\frac{\partial}{\partial x}\left(\frac{\partial U}{\partial x}\right)\right)_{L_i} + Y\left(\frac{\partial}{\partial y}\left(\frac{\partial U}{\partial x}\right)\right)_{L_i}$$
(174)

$$= X \left(\frac{\partial^2 U}{\partial x^2}\right)_{L_i} + Y \left(\frac{\partial^2 U}{\partial x \partial y}\right)_{L_i}$$
(175)

Eléments de Mécanique Céleste V0.9

_

65

$$\ddot{Y} + 2n\dot{X} \approx \left(\frac{\partial U}{\partial y}\right)_{L_{i}} + X\left(\frac{\partial}{\partial x}\left(\frac{\partial U}{\partial y}\right)\right)_{L_{i}} + Y\left(\frac{\partial}{\partial y}\left(\frac{\partial U}{\partial y}\right)\right)_{L_{i}}$$
(176)

$$= X \left(\frac{\partial^2 U}{\partial x \partial y}\right)_{L_i} + Y \left(\frac{\partial^2 U}{\partial y^2}\right)_{L_i}$$
(177)

En mettant ces dernières équations sous forme matricielle, et en supposant la pulsation n = 1, il vient :

$$\begin{cases} \ddot{X} - 2\dot{Y} = XU_{xx} + YU_{xy} \\ \ddot{Y} + 2\dot{X} = XU_{xy} + YU_{yy} \end{cases} \text{ avec } \left(\frac{\partial^2 U}{\partial x^2}\right)_{L_i} = U_{xx} \left(\frac{\partial^2 U}{\partial x \partial y}\right)_{L_i} = U_{xy} \text{ et } \left(\frac{\partial U}{\partial y^2}\right)_{L_i} = U_{yy} \end{cases}$$
(178)

On peut écrire cette équation sous la forme matricielle suivante :

$$\begin{pmatrix} \dot{X} \\ \dot{Y} \\ \ddot{X} \\ \ddot{Y} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ U_{xx} & U_{xy} & 0 & 2 \\ U_{xy} & U_{yy} & -2 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ \dot{X} \\ \dot{Y} \end{pmatrix}$$
(179)

soit

$$\dot{\bar{\mathbf{X}}} = \mathbf{A}\bar{\mathbf{X}} \text{ avec } \bar{\mathbf{X}} = \begin{pmatrix} X \\ Y \\ \dot{X} \\ \dot{Y} \\ \dot{Y} \end{pmatrix}$$

Il convient maintenant de résoudre ce système d'équations dynamiques. L'équation caractéristique du système $\dot{X}=A\bar{X}$ est

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 0 & 1 & 0 \\ 0 & -\lambda & 0 & 1 \\ U_{xx} & U_{xy} & -\lambda & 2 \\ U_{xy} & U_{yy} & -2 & -\lambda \end{vmatrix}$$
(180)

$$= \lambda^4 + (4 - U_{xx} - U_{yy})\lambda^2 + U_{xx}U_{yy} - U_{xy}^2$$
(181)

$$= 0$$
 (182)

(On rappelle que dans la base des solutions Y_i , les solutions s'écrivent $Y_i = C_i e^{\lambda_i t}$ i = 1, 2, 3, 4) On se referera à [6] pour le traitement complet des solutions. Toutefois, dans le cas des points L4 et L5, on peut écrire $r_1 = r_2 = 1$ (sommet d'un triangle équilatéral) et dans ce cas on a

$$U_{xx} = 3/4$$
, $U_{yy} = 9/4$, et $U_{xy} = \pm 3\sqrt{3}\frac{(1-2\mu_2)}{4}$ (183)

L'équation caractéristique devient alors

$$\lambda^4 + \lambda^2 + \frac{27}{4}\mu_2 \left(1 - \mu_2\right) = 0 \tag{184}$$

Eléments de Mécanique Céleste V0.9

66

Les solutions sont stables (imaginaires) si et seulement si

$$1 - 27(1 - \mu_2) \mu_2 \ge 0$$

Dans ce cas, pour des valeurs de μ_2 faibles, il vient :

$$\lambda_1, \lambda_2 \approx \pm i \sqrt{\left|-1 + \frac{27}{4}\mu_2\right|} \text{ et } \lambda_3, \lambda_4 \approx \pm i \sqrt{\left|-\frac{27}{4}\mu_2\right|}$$
(185)

Le mouvement autour des points de Lagrange L_4 et L_5 est donc périodique. Le mouvement a comme périodes $2\pi/|\lambda_{1,2}|$ et $2\pi/|\lambda_{3,4}|$

Il est la composée de deux mouvements différents :

– Un mouvement à "courte" période $2\pi/|\lambda_{1,2}| \approx 2\pi$, c'est à dire ayant la période orbitale de la masse μ_2 .

– Un mouvement de *libration* qui se superpose à celui-là, de période $2\pi/|\lambda_{3,4}|$, autour du point d'équilibre.

FIGURE 45 – Mouvement au point L4 (tiré de [6]) - Le mouvement de la particule est la somme des deux mouvements : le mouvement épicyclique et le mouvement de l'épicentre (grande ellipse) pour la solution trouvée. On notera que ce mouvement est stable dans le repère tournant, ce qui explique la persistance d'astéroïdes aux points L4 et L5 de différentes planètes (Jupiter bien sûr, mais aussi Mars, Neptune).

Eléments de Mécanique Céleste V0.9

ISAE - SUPAERO

67

6 Couplages et résonances

On l'a vu, l'impact de la Gravitation n'est pas restreint aux interactions "directes" entre le Soleil et les planètes et leurs satellites, mais tous les corps dans le Système Solaire ressentent leurs effets réciproques. Dans le Système Solaire, typiquement, un corps produit la force dominante sur un autre corps, et le mouvement résultant peut être pensé comme un mouvement Képlérien autour d'un corps central, sujets à de petites perturbations résultant de l'impact des autres corps. Nous avons traité dans le paragraphe précédent le mouvement d'un corps de masse négligeable dans le champ de gravité créé par deux autres, maintenant nous allons nous intéresser à un cas un peu plus général.

Classiquement, une grande partie de la discussion sur l'évolution des orbites dans le Système Solaire fait appel à la théorie des perturbations. Cette méthode consiste pour l'essentiel à écrire les équations du mouvement comme la somme de termes qui décrivent le mouvement Képlérien indépendant des corps autour du Soleil, plus un terme (la fonction perturbatrice) qui contient les termes liés aux perturbations induites par chacun des autres corps du système Solaire, selon les ordres de grandeur considérés.

En général, on va exprimer les termes perturbateurs en fonction de "petits" paramètres du système, comme par exemple des ratios masse de la Planète sur masse du soleil, excentricité, inclinaison, ce qui va permettre d'utiliser des développements limités ("expansions") permettant d'intégrer à long terme les équations du mouvement.

6.1 Résonances

Si les perturbations sur les orbites Képlériennes sont souvent petites, elles ne peuvent pas être ignorées. Elles doivent être incluses dans les éphémérides des planètes si une grande précision est requise, par exemple dans le cas où l'on veut faire de la navigation interplanétaire pour une sonde spatiale, ou encore pour des observations très fines, comme la prédiction d'occultations stellaires (étude des atmosphères) ou encore l'étude des petits mouvements des planètes liés à leur structure interne (géodésie, gravimétrie). La plupart des perturbations sont de nature périodique, leurs directions oscillant avec les longitudes des corps célestes considérés, ou bien oscillant en fonction de fonctions plus compliquées des élements orbitaux (cf plus loin).

De petites pertubations peuvent produire des effets prépondérants si elles contiennent des fréquences proches des fréquences naturelles de résonance des systèmes considérés. Dans de telles circonstances, les perturbations s'additionnent et s'amplifient de manière cohérente, au point que des conditions initiales infiniment proches ne seront pas suffisantes pour éviter une divergence des solutions du système au bout d'un certain temps.

Pendant très longtemps, les astronomes ont cherché à retrouver dans les mouvements des corps du Système Solaire les périodicités qui leur permettaient alors de faire des prédictions (pour les dates des éclipses par exemple), et jusque très récemment le mouvement des planètes dans le Système Solaire était considéré comme le modèle même de régularité (d'où la notion de Cosmos.) Les résultats de ces dernières années issus directement des conséquences de cette approche en termes de systèmes dynamiques et de résonances montrent au contraire que le mouvement des planètes lui-même est chaotique, et qu'il devient impossible de prévoir son évolution

au delà de 100 millions d'années environ, ce qui est très court, comparé aux 4,6 milliards d'années d'existence du Système Solaire.

Aujourd'hui, les "nouveaux" résultats acquis en mécanique céleste portent pour l'essentiel la marque des progrès réalisés dans la compréhension de la dynamique des systèmes gravitationnels, parmi lequels on trouve le "bestiaire" des résonances entre les dynamiques des corps célestes. La figure 46 présente quelques exemples des types de résonances que l'on trouve dans le Système Solaire.

FIGURE 46 – Les différents phénomènes de résonance

Une résonance orbite-orbite se produit si deux objets célestes ont périodiquement les mêmes positions l'un par rapport à un autre, de telle sorte que la force de gravitation réciproque tende à conserver la configuration de manière stable (résonance stable) au lieu de s'écarter rapidement de cette situation (cas d'une résonance instable), et ce, même si cette force de gravitation mutuelle est beaucoup plus petite que la force de gravité entre le Soleil et l'un des objets célestes. Dans le cas d'une résonance orbitale entre deux objets célestes, il y aura égalité entre un multiple de la période orbitale (année) du premier objet et un multiple de la période orbitale de l'autre objet.

Par exemple,

a) Les résonances orbite-orbite concernant les planètes et les Lunes du Système Solaire sont les suivantes :

- 2:3 Neptune-Pluton
- 4 :2 Mimas-Téthys (lunes de Saturne)
- 2 :1 Encelade-Dioné (lunes de Saturne)
- 4 :3 Titan-Hypérion (lunes de Saturne)

- 1 :2 :4 Io-Europe-Ganymède (lunes de Jupiter), l'unique résonance de Laplace.

NB : Pluton est dans une orbite résonante 2 :3 avec Neptune veut dire que le temps mis par

Pluton pour effectuer deux révolutions autour du Soleil sera le même que celui mis par Neptune pour effectuer trois révolutions autour du Soleil.

FIGURE 47 – Le couplage Orbite Orbite (tiré de [6]) - au passage au plus près des deux orbites, on constate l'existence d'une force de rappel qui tend à aligner les périastres.

b) Les astéroides situés aux points de Lagrange L4 et L5 du système Soleil-Jupiter sont capturés dans une orbite résonante en 1 :1 avec Jupiter (on a vu pourquoi à la section 5.6) Le groupe d'astéroïdes Hilda est quant à lui en résonance 3 :2 avec Jupiter. Les orbites considérées sont stables. Toutefois, les resonances orbite-orbite instables (résonances 2 :1, 3 :1, 5 :2, etc avec Jupiter) causent les "lacunes de Kirkwood" (ou "Kirkwood gaps") dans la distribution des astéroïdes en fonction du demi grand axe de leur orbite.

c) On peut avoir également des résonances orbite-orbite entre plus de deux objets célestes, par exemple les lunes de Jupiter Io, Europe et Ganymede sont liées par une résonance dite 'résonance de Laplace'. Ganymede étant en résonance 4 :1 avec Jupiter, Europe en résonance 2 :2 et Io en résonance 1 :1.

La modélisation de ces effets, si elle est très intéressante, utilise des développements un peu fastidieux. Toutefois, dans le cadre de ce cours, nous nous attacherons à un peu mieux comprendre l'autre type de couplage (le couplage Spin Orbite), qui permet de répondre à des questions du type :

- Pourquoi la Lune présente-elle toujours la même face ?

– Pourquoi la durée de révolution de Mercure est-elle phasée avec sa durée de rotation : à chaque révolution, la planète effectue 1,5 rotation ?

- Comment décrire le mouvement du satellite de Saturne Hypérion ?

FIGURE 48 – Les Lacunes de Kirkwood (nombre d'objets en fonction de la distance au Soleil) (c)Gareth Williams/Minor Planet Center. Graph by Barbara Aulicino.)

6.2 Paradigme pendulaire en mécanique céleste

Dans cette section, nous traiterons un exemple simplifié, élémentaire de résonateur qui est bien entendu l'oscillateur harmonique simple (le pendule). Comme nous le verrons, il sert de matrice pour la compréhension de de nombreux problèmes.

On reprend les notations de la section 3.8.1. On a déjà vu l'expression du Lagrangien

$$\mathcal{L} = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta) \tag{186}$$

Dans le formalisme hamiltonien, l'impulsion généralisée s'écrit, par définition :

$$P_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = m l^2 \dot{\theta} \tag{187}$$

On peut réécrire lénergie cinétique en fonction de P_{θ} : $T(\theta, P_{\theta}) = \frac{1}{2} \frac{P_{\theta}^2}{ml^2}$ (l'énergie potentielle est inchangée). Et on en déduit le Hamiltonien classique :

$$H(\theta, P_{\theta}) = \frac{1}{2} \frac{P_{\theta}^2}{ml^2} - mgl(1 - \cos\theta)$$
(188)

Les équations canoniques du système sont :

$$\begin{cases} \dot{\theta} = \frac{P_{\theta}}{ml^2} \\ \dot{P}_{\theta} = mgl\sin\theta \end{cases}$$
(189)

Eléments de Mécanique Céleste V0.9

71

6 COUPLAGES ET RÉSONANCES

On retrouve ainsi le portrait de phase "classique" avec les trois régimes

- Harmonique
- Périodique mais non harmonique
- Révolutif

FIGURE 49 – Portrait de phase du pendule simple

On verra dans les sections suivantes que ce modèle est très utile pour comprendre le comportement de systèmes dynamiques célestes.

72
6.3 Le couplage Spin orbite : un problème de Kepler perturbé

On considère le système formé par une planète et son satellite, ou par une étoile et une de ses planètes satellite. Nous commencerons par exprimer l'énergie potentielle du satellite grâce au moment quadrupolaire. Puis, nous exprimerons l'expression générale du Hamiltonien du système associé, dans ce cas égal à l'énergie mécanique totale. Afin de déterminer la dynamique du système, nous utiliserons les théorèmes de simplication du Hamiltonien pour exprimer que la dynamique du système est également solution du Hamiltonien les différents cas possibles. Nous en déduirons la chaoticité de la rotation d'Hypérion d'une manière similaire à celle qui a été utilisée par Wisdom, Peale et Mignard dans leur article de 1984 (ICARUS). Cet exemple permettra de montrer un des intêrets majeurs du formalisme hamiltonien : c'est un formalisme très bien adapté au traitement des problèmes intégrables perturbés.

FIGURE 50 - Conventions de notation du couplage Spin Orbite

6.4 Mise en équation du problème

Considérons un système formé d'un corps central et d'une de ses lunes, ou d'une étoile et d'une de ses planètes. On fait l'approximation que le corps central est fixe dans un repère inertiel et on fait également l'approximation que le satellite est solide (pas de dissipation visqueuse- ce qui est approximatif dans le cas d'une planète, et encore plus dans le cas d'une étoile). On supposera que la taille et la masse du satellite sont très petites devant la taille du corps central. Le mouvement du satellite autour de du corps central est appelé mouvement de révolution. Le mouvement du satellite autour de son centre de gravité est appelé mouvement de rotation.

Il s'agit donc à priori d'un problème à 6 degrés de liberté (3 distances et 3 angles), c'est à dire d'espace des phases de dimension 12. Calculons les équations de ce mouvement.

Eléments de Mécanique Céleste V0.9 73

Mouvements de la Lune autour du corps central.

On utilisera dans les calculs à venir, les notations de la figure (6.4).

6.5 Calcul du moment quadrupolaire

Dans ce paragraphe, nous exprimerons l'expression du moment quadrupolaire. Si l'on suppose que le satellite est un corps solide, on peut écrire que son énergie potentielle dans le champ de gravité créé par le corps central est :

$$V = -G \int \frac{dm}{OP} \tag{190}$$

où G est la constante gravitationnelle et dm un élément de masse infinitésimale du satellite.

Calculons tout d'abord la distance OP :

$$\left(\overrightarrow{OP}\right)^2 = \left(\overrightarrow{r} + \overrightarrow{p}\right)^2 = r^2 + p^2 + 2\overrightarrow{r} \cdot \overrightarrow{p}.$$
(191)

C'est à dire :

$$OP = r \left(1 + \frac{p^2}{r^2} + 2 \cdot \frac{\vec{u} \cdot \vec{p}}{r} \right)^{1/2}$$
(192)

Développons maintenant ces équations en p/r avec la formule de Taylor. On retrouve ici l'hypothèse que la taille du satellite est très petite vis à vis de sa distance au corps central. Le développement de Taylor à l'ordre 2 donne :

$$\frac{1}{OP} = r \left(1 - \frac{1}{2} \left(\frac{p}{r} \right)^2 - \frac{\overrightarrow{u} \cdot \overrightarrow{p}}{r} + \frac{3}{2} \left(\frac{\overrightarrow{u} \cdot \overrightarrow{p}}{r} \right)^2 + o \left(\frac{p}{r} \right)^3 \right).$$
(193)

Eléments de Mécanique Céleste V0.9

74

Ceci nous donne l'expression approchée du potentiel V suivante :

$$V = -\frac{G}{r} \int \left(1 - \frac{\vec{u} \cdot \vec{p}}{r} - \frac{1}{2} \left(\frac{p}{r}\right)^2 + \frac{3}{2} \left(\frac{\vec{u} \cdot \vec{p}}{r}\right)^2 \right) dm$$
(194)

Il reste à calculer l'intégrale. Il est évident que pour le premier et le troisième terme sous l'intégrale nous avons :

$$\int dm = m_H, \quad \int \frac{\overrightarrow{u} \cdot \overrightarrow{p}}{r} dm = \frac{\overrightarrow{u}}{r} \int \overrightarrow{p} dm = 0, \tag{195}$$

puisque \overrightarrow{p} prend son origine au centre de masse du satellite.

Pour calculer les deux autres termes qui sont sous l'intégrale, on se place dans le repère des moments principaux d'inertie du satellite que l'on note $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$. On note la matrice d'inertie du satellite dans ce repère, I_H :

$$I_H = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}$$
(196)

où $A = \int (y^2 + z^2) dm$, $B = \int (x^2 + z^2) dm$, $A = \int (y^2 + x^2) dm$. On calcule maintenant facilement les 2 termes qu'il nous reste sous l'intégrale, en écrivant p sur la base des moments principaux d'inertie $\overrightarrow{p} = x \overrightarrow{I} + y \overrightarrow{J} + z \overrightarrow{K}$:

$$\begin{split} \int p^2 dm &= \frac{A+B+C}{2}, \\ \int (\overrightarrow{u}.\overrightarrow{p})^2 dm &= \int \left(x\overrightarrow{u}.\overrightarrow{I} + y\overrightarrow{u}.\overrightarrow{J} + z\overrightarrow{u}.\overrightarrow{K}\right)^2 dm \\ &= \int x^2 \left(\overrightarrow{u}.\overrightarrow{I}\right)^2 dm + \int y^2 \left(\overrightarrow{u}.\overrightarrow{J}\right)^2 dm + \int z^2 \left(\overrightarrow{u}.\overrightarrow{K}\right)^2 dm \\ &= \frac{B+C-A}{2} \left(\overrightarrow{u}.\overrightarrow{I}\right)^2 + \frac{A+C-B}{2} \left(\overrightarrow{u}.\overrightarrow{J}\right)^2 + \frac{A+B-C}{2} \left(\overrightarrow{u}.\overrightarrow{K}\right)^2 \end{split}$$

car les termes croisés en xy, xz et yz sont nuls. On obtient au final l'expression du potentiel quadrupolaire du satellite.

$$V = -\frac{Gm_H}{r} + \frac{G}{2r^3} \left(2A - B - C - 3\left(A - B\right) \left(\overrightarrow{u} \cdot \overrightarrow{J}\right)^2 - 3\left(A - C\right) \left(\overrightarrow{u} \cdot \overrightarrow{K}\right)^2 \right).$$
(197)

Remarque : Ce résultat est vrai pour un corps solide quelconque en mouvement Képlerien autour d'un corps fixe.

Eléments de Mécanique Céleste V0.9

75

Remarque : :Si l'on note *I* le moment d'inertie le long de la ligne $OP, I = \int_{P} r^2 \sin^2 \theta dm$ il vient aussi l'expression (plus simple) :

$$V = -\frac{Gm}{r} - \frac{G(A + B + C - 3I)}{2r^3}$$
(198)

Une fois obtenu le potentiel, on peut en déduire les composantes de la force gravitationnelle par unité de masse :

$$\vec{F} = -\vec{\nabla}V = \begin{cases} -\frac{\partial V}{\partial x} \\ -\frac{\partial V}{\partial y} \\ -\frac{\partial V}{\partial z} \end{cases}$$
(199)

Ainsi que le moment associé :

$$\vec{N} = \overrightarrow{GP} \wedge \vec{F} = \begin{cases} 3G(C-B)yz/r^5\\ 3G(A-C)zx/r^5\\ 3G(B-1)xy/r^5 \end{cases}$$
(200)

6.6 Calcul de l'Hamiltonien

De l'expression du potentiel quadrupolaire, on déduit immédiatement du potentiel l'énergie potentielle du satellite E_p :

$$E_p = -\frac{Gm_Sm_H}{r} + \frac{Gm_S}{2r^3} \left(2A - B - C - 3\left(A - B\right)\left(\overrightarrow{u}.\overrightarrow{J}\right)^2 - 3\left(A - C\right)\left(\overrightarrow{u}.\overrightarrow{K}\right)^2\right).$$
(201)

L'énergie cinétique quand à elle s'écrit :

$$T = \frac{1}{2}m_H \dot{\vec{r}}^2 + \frac{1}{2}\vec{\Omega}^T I_H \vec{\Omega}$$
(202)

où $\overrightarrow{\Omega}$ est la vitesse angulaire du satellite.

On en tire le Lagrangien du problème :

$$L = \frac{1}{2}m_{H}\dot{\vec{r}}^{2} + \frac{1}{2}\vec{\Omega}^{T}I_{H}\vec{\Omega}$$
(203)
+ $\frac{Gm_{S}m_{H}}{r} - \frac{Gm_{S}}{2r^{3}}\left(2A - B - C - 3(A - B)\left(\vec{u}.\vec{J}\right)^{2} - 3(A - C)\left(\vec{u}.\vec{K}\right)^{2}\right)$

et l'hamiltonien correspondant

$$H = \frac{1}{2}m_{H}\dot{\overrightarrow{r}}^{2} + \frac{1}{2}\vec{\Omega}^{T}I_{H}\vec{\Omega}$$

$$- \frac{Gm_{S}m_{H}}{r} + \frac{Gm_{S}}{2r^{3}}\left(2A - B - C - 3(A - B)\left(\overrightarrow{u}.\overrightarrow{J}\right)^{2} - 3(A - C)\left(\overrightarrow{u}.\overrightarrow{K}\right)^{2}\right)$$
(205)

Eléments de Mécanique Céleste V0.9

76

6.7 Simplification du problème : cas découplé

Simplifions le problème pour se concentrer sur les caractéristiques du mouvement du satellite qui nous intéressent. Considérons en première approximation, que le satellite considéré est un ellipsoïde qui tourne autour de son axe d'inertie le plus grand. Considérons aussi ce satellite a un mouvement plan autour du corps central. Et considérons enfin que ces deux mouvements de rotation et de révolution se passent dans le même plan(cf figure (52)).On utilisera dans les calculs à venir, les notations de la figure (52).

FIGURE 52 - Simplifications du modèle de couplage Spin Orbite

Appliquons les simplifications aux résultats précédents. L'énérgie potentielle est maintenant donnée par l'expression :

$$E_p = -\frac{Gm_Sm_H}{r} - \frac{Gm_S}{2r^3} \left[B + C - 2A + 3(A - B)\sin^2(x - v) \right],$$
 (207)

puisque $\overrightarrow{u}.\overrightarrow{K} = 0$ et $\overrightarrow{u}.\overrightarrow{J} = \sin(x-v)$. L'énergie cinétique se simplifie en :

$$T = \frac{1}{2}m_{H}\dot{\vec{r}}^{2} + \frac{C}{2}\dot{x}^{2}.$$
 (208)

Ceci nous donne un nouvel Hamiltonien qui s'écrit :

$$H = \frac{1}{2}m_H \dot{\vec{r}}^2 + \frac{C}{2}\dot{x}^2 - \frac{Gm_Sm_H}{r} - \frac{Gm_S}{2r^3} \left[B + C - 2A + 3(A - B)\sin^2(x - v) \right].$$
 (209)

Ce nouveau problème est plus simple car il n'a plus que 3 degrés de liberté : 2 degrés de liberté avec le mouvement en (r, P_r, ϕ, P_{ϕ}) dans le plan (avec $P_r = m_H \dot{r}$ et $P_{\phi} = m_H r^2 \dot{\phi}$ d'après le §9.2) et 1 degré de liberté avec le mouvement en (x, P_x) (avec $P_x = C\dot{x}$) sur le cercle. C'est maintenant un problème d'espace des phases de dimension 6 qui est $(\mathbb{R} \times \mathbb{R} \times \mathbb{S})^2$.

Eléments de Mécanique Céleste V0.9 77

6.8 Un problème de Kepler perturbé

En réordonnant les termes de l'Hamiltonien de la manière suivante :

$$H = \underbrace{\frac{1}{2}m_{H}\dot{\vec{r}}^{2} - \frac{Gm_{S}m_{H}}{r}}_{H_{K}} + \underbrace{\frac{C}{2}\dot{x}^{2}}_{H_{R}} - \underbrace{\frac{Gm_{S}}{2r^{3}}\left[B + C - 2A + 3\left(A - B\right)\sin^{2}\left(x - v\right)\right]}_{H_{p}}.$$
(210)

On identifie dans cette expression :

- H_K le potentiel Képlérien (décrit dans le 3.8.2)

 $-H_R$ le potentiel associé à la rotation du satellite dans le champ de pesanteur

- H_P un potentiel perturbateur.

On note bien entendu que si A = B = C (le satellite a une symétrie sphérique), alors $H = H_K + H_R$. Dans le cas contraire, il y a couplage des équations . En revanche si le terme H_p est non nul (i.e le satellite est considéré comme non sphérique), non seulement les 2 mouvements de révolution et de rotation du satellite deviennent couplés son mouvement autour du corps central ne sera plus Keplerien, tandis que sa rotation autour de son centre de gravité ne sera plus uniforme. En particulier les caractéristiques du mouvement Képlerien, à savoir une trajectoire conique au demi grand axe et à l'excentricité constants (cf les calculs en annexe §9.2), ne seront plus valables, et la pulsation du mouvement de rotation ne sera plus constante.

En effet, le demi grand axe et l'excentricité se mettront à varier ainsi que la vitesse de rotation puisque maintenant les paramètres de Delaunay (voir annexe 9.2.4) vont vérifier :

$$\dot{L} = -\frac{\partial H}{\partial l} = -\frac{\partial H_p}{\partial l} \neq 0$$
(211)

$$\dot{G} = -\frac{\partial H}{\partial g} = -\frac{\partial H_p}{\partial g} \neq 0$$
(212)

$$\dot{P}_x = -\frac{\partial H}{\partial x} = -\frac{\partial H_p}{\partial x} \neq 0$$
(213)

Dans le cas général d'une planète telle qu'elle est aujourd'hui, les termes qui perturbent ici le mouvement Képlerien et la rotation uniforme sont non nul. Les mouvements de rotation et de révolution sont donc couplés. Ceci est particulièrement vrai pour des satellites aux formes exotiques, tels que le satellite de Saturne Hypérion.

Néanmoins si on regarde le terme de couplage H_p , on remarquera que c'est un terme en $1/r^3$. Ce terme est petit face à H_K qui lui est typiquement en $1/r^2$. La variation des variables L et G (i.e. a et e) sera donc lente. A court terme nous pourrons donc considérer le mouvement du satellite autour du corps central comme Keplerien et ainsi supprimer l'influence du mouvement de rotation sur le mouvement de révolution.

Par contre nous ne pouvons négliger à priori H_p devant H_R . Nous ne pouvons donc supprimer l'influence du mouvement de révolution sur le mouvement de rotation. Nous garderons

Eléments de Mécanique Céleste V0.9 78

donc dans l'étude de la rotation l'Hamiltonien complet $H_R + H_p$. Cependant nous considérerons que le mouvement de révolution du satellite est Képlerien et nous étudirons dans la suite le mouvement de rotation du satellite autour de lui-même donné par l'Hamiltonien restant :

$$\widetilde{H} = \frac{C}{2}\dot{x}^2 - \frac{3Gm_S}{2r^3(t)} \left(A - B\right) \sin^2\left(x - v(t)\right).$$
(214)

avec r(t) et v(t) les solutions du problème Képlerien H_K .

6.9 Etude de la rotation du satellite dans le couplage spin-orbite (modèle simplifié)

Désormais, nous pouvons considérer d'une part le mouvement de révolution du satellite comme résolu à court terme puisqu'il s'agit alors d'un mouvement Keplerien (voir §9.2 pour sa résolution). D'autre part nous pouvons considérer le mouvement de la rotation du satellite à court terme donné par le Hamiltonien de rotation uniforme perturbé \tilde{H} .

Ce nouveau problème donné par \tilde{H} est maintenant beaucoup plus simple puisqu'il est à un seul degrés de liberté (x, \dot{x}) . Il est cependant non autonome, i.e. dépendant du temps, à travers les variables périodiques r(t) et v(t).

Simplifions maintenant au maximum ce nouvel Hamiltonien \widetilde{H} et cherchons à resoudre le mouvement en (x, \dot{x}) de rotation du satellite. En développant le terme en $\sin^2 (x - v(t))$, \widetilde{H} se reécrit :

$$\widetilde{H} = \frac{C}{2}\dot{x}^2 - \frac{3Gm_S}{4r^3(t)}\left(A - B\right) + \frac{3Gm_S}{4r^3(t)}\left(A - B\right)\cos 2(x - v(t)).$$
(215)

D'aprés les équations de Hamilton, le terme $-\frac{3Gm_S}{4r(t)^3}(A-B)$ n'aura naturellement aucun impact sur la dynamique du couple (x, \dot{x}) . Nous garderons donc l'Hamiltonien minimal qui décrit la dynamique de (x, \dot{x}) suivant :

$$\widetilde{H} = \frac{C}{2}\dot{x}^2 + \frac{3Gm_S}{4r^3(t)} \left(A - B\right)\cos 2(x - v(t)).$$
(216)

Pour obtenir une expression simple en fonction du temps t, nous allons développer r(t) et v(t) en séries de l'anomalie moyenne M (Ces calculs sont un peu fastidieux, cf annexe §10.2)

De plus, si l'on suppose que le satellite a une excentricité très faible (ce qui est vrai dans le cas général), nous pouvons encore simplifier cette écriture en developpant les séries obtenues en degrés de l'excentricité (cf §10.2). Avant tout calcul remarquons d'abord que :

$$\frac{\cos^2(x-v(t))}{r^3(t)} = Re\left(e^{i2x}\frac{e^{-2iv(t)}}{r^3(t)}\right).$$
(217)

Maintenant, par le moyen d'un calcul long et fastidieux à la main, ou rapide et facile avec un manipulateur algébrique (comme TRIP par exemple, développé par l'IMCCE de l'Observatoire de Paris, voir [5]), on obtient :

$$a^{3}\frac{\cos^{2}(x-v(t))}{r^{3}(t)} = \cos\left(2(x-t)\right) - \frac{1}{2}e\cos\left(2x-t\right) + \frac{7}{2}e\cos\left(2x-3t\right).$$
 (218)

Eléments de Mécanique Céleste V0.9

Remarquez qu'on a pris ici comme échelle de temps $t = 2\pi$ *pour une révolution.* On obtient maintenant l'expression approchée du Hamiltonien \tilde{H} :

$$\widetilde{H} \simeq \frac{C}{2}\dot{x}^2 + \frac{3Gm_S}{4a^3} \left(A - B\right) \left[\cos\left(2(x - t)\right) + e\left(-\frac{1}{2}\cos\left(2x - t\right) + \frac{7}{2}\cos\left(2x - 3t\right)\right)\right].$$
(219)

Ce qui donne finalement, quand on pose $\epsilon = (3Gm_S/4a^3)(A - B)$, le hamiltonien approché de la rotation du satellite suivant :

$$\widetilde{H} \simeq \frac{C}{2}\dot{x}^2 + \epsilon\cos\left(2(x-t)\right) + \epsilon e\left(-\frac{1}{2}\cos\left(2x-t\right) + \frac{7}{2}\cos\left(2x-3t\right)\right)$$
(220)

6.10 Intégration du mouvement de rotation

Intégrons maintenant, quand c'est possible, le mouvement de rotation du satellite dans différents cas.

- 1er cas : quand $\epsilon = 0$.

Dans ce cas le satellite est un corps de révolution (A = B), et on retrouve une dynamique de rotation uniforme. En effet le Hamiltonien devient :

$$\widetilde{H} = \frac{C}{2}\dot{x}^2 = \frac{P_x^2}{2C}.$$
(221)

Donc

$$\dot{P}_x = -\frac{\partial \widetilde{H}}{\partial x} = 0, \quad \dot{x} = \frac{\partial \widetilde{H}}{\partial P_r} = \frac{1}{C} = cste$$
 (222)

La rotation du satellite est uniforme i.e. de pulsation constante 1/C : $x = \frac{1}{C}t + x(t_0)$. Ces trajectoires sont des droites horizontales dans l'espace des phases :

Eléments de Mécanique Céleste V0.9

- 2ème cas : quand e = 0.

Dans ce cas, le satellite a un mouvement de révolution circulaire autour du corps central. Le Hamiltonien devient quasiment le hamiltonien d'un pendule :

$$\widetilde{H} = \frac{C}{2}\dot{x}^2 + \epsilon \cos 2(x-t) = \frac{P_x^2}{2C} + \epsilon \cos 2(x-t).$$
(223)

Pour se rapprocher du Hamiltonien d'un pendule on a envie de faire le changement de variable 2y = 2(x - t). Ici on peut utiliser la méthode habituelle des fonctions génératrices en introduisant une fonction $G_3(P_x, y, t)$ par exemple, qui transforme \tilde{H} en l'hamiltonien d'un pendule classique et on déduit le changement de variable par la méthode d'Hamilton-Jacobi.

Cependant une astuce bien connue dans ces situations simples peut nous épargner ces longs calculs. Il suffit de remarquer que chercher un couple (x, P_x) solution du système non-autonome $\tilde{H} = P_x^2/2C + \epsilon \cos 2(x-t)$ est équivalent à chercher deux couples de variables (x, P_x) et (t, K) solutions du système autonome $H' = P_x^2/2C + \epsilon \cos 2(x-t) + K$. En effet dans les deux cas, les trois variables communes x, P_x et t vérifient les mêmes équations. Pour x et P_x c'est évident (dans les deux cas $\dot{x} = P_x/C$ et $\dot{P}_x = 2\epsilon \sin 2(x-t)$). Pour t c'est aussi vrai puisque dans le premier cas $\dot{t} = 1$ tout comme dans le deuxième cas $\dot{t} = \frac{\partial H'}{\partial K} = 1$.

Cherchons donc le changement de variable qui vérifie 2y = 2(x-t) dans ce nouveau système autonome. Quitte à choisir un changement de variable, autant en choisir un simple. Prenons un changement de variable linéaire. D'après le deuxième exemple du paragraphe 8.1 il suffit de trouver 2 constantes c et d telles que :

$$\begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ c & d \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}, et \begin{pmatrix} P_y \\ P_z \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & -1 \\ c & d \end{pmatrix}^t \end{pmatrix}^{-1} \begin{pmatrix} P_x \\ K \end{pmatrix}.$$

Par souci de simplicité, on choisit c = 0 et d = 1. On obtient donc dans le nouveau jeu de variables (y, z, P_u, P_z) , le Hamiltonien :

$$H = \frac{(P_y - 1)^2}{2C} + \epsilon \cos 2y + P_z - \frac{1}{2}.$$
 (224)

Ici P_z est constant, il ne change donc pas la dynamique et on peut l'absorber dans H sans changer les équations. Enfin en faisant le changement de variable canonique $I = P_y - 1$ on obtient bien le Hamiltonien du pendule à double fréquence :

$$H = \frac{I^2}{2C} + \epsilon \cos 2y \tag{225}$$

Intégrons ses trajectoires numériquement et traçons les dans l'espace des phases (I, y):

On retrouve ici bien sûr, l'espace des phases du pendule (double). On parle alors de *résonance*. On dira que le mouvement de rotation du satellite est en résonance avec son mouvement de

FIGURE 54 – Espace des phases de la rotation d'un satellite en couplage spin/orbite, $\epsilon = 0.1$ et e = 0.

révolution lorsque les conditions initiales du mouvement du satellite sont telles que sont mouvement de rotation est compris dans l'une des deux zones centrales (peuplées de courbes fermées) de l'espace des phases : les *zones de libration*. Dans ce cas la vitesse angulaire de rotation du satellite est quasi-égale à sa vitesse angulaire de révolution.

On conclut de cette première analyse que, chaque fois qu'on a $A \neq B$, il existera des zones de résonance : les zones de libration. Si les conditions initiales du mouvement du satellite sont telles que le mouvement de rotation se trouve dans une de ces zones, alors la rotation sera en résonance avec sa révolution et les deux mouvements auront des vitesses angulaires quasi-identiques.

Remarque 1 : Ceci peut arriver souvent car la taille de la zone de libration n'est pas nulle. En effet l'énergie de la trajectoire séparatrice qui passe par le point (1,0) est $H = \epsilon$. Or $H = (I - 1)^2/(2C) + \epsilon \cos 2y$, donc pour $y = \pi/4$ la séparatrice passe par le point $(I = 1 + \sqrt{2C\epsilon})$. La largeur de la zone de résonance est donc $\sqrt{2C\epsilon}$. On retrouve bien figure 55 que la taille de la zone de libration augmente avec ϵ .

Remarque 2 : Le pendule est le modèle générique des résonances, il représente localement toutes les résonances sauf celles qui existent dans les systèmes à plus de 2 degrés de liberté

Eléments de Mécanique Céleste V0.9 82

FIGURE 55 – Espace des phases de la rotation d'un satellite en couplage spin/orbite, $\epsilon = 0.2$ et e = 0.

où entrent en résonance plus de 2 fréquences.

Remarque 3 : L'état final couplé (où la période de rotation et la période de révolution du satellite sont dans un ratio rationel simple) représente en fait l'état final résonant pour les couples planète-satellites décrits dans l'introduction de ce paragraphe. Pour le couple Terre-Lune, il s'agit d'un couplage 1 :1. Mais en fonction des paramètres ϵ et e, ainsi que des caractéristiques liées à la dissipation interne de l'énergie que nous avons négligée, l'état final peut être différent, comme par exemple le couplage 3 :2 de Mercure autour du Soleil.

Eléments de Mécanique Céleste V0.9

- 3ème cas : cas général quand $\epsilon \neq 0$ et $e \neq 0$.

Dans ce cas général, le problème est réellement à 2 degrés de liberté. Il n'est plus intégrable. Les trajectoires séparatrices ne joignent plus les points "selles". Il y a apparition de chaos au voisinage des points elliptiques comme on voit figure 56

FIGURE 56 – Espace des phases de la rotation d'un satellite en couplage spin/orbite, $\epsilon = 0.2$ et e = 0.001, e = 0.01

De plus même avec une faible perturbation, il ne subsiste plus d'ensemble continu de trajectoires régulières. Pas même dans la zone de circulation bien que ce ne soit pas évident à l'oeil nu. Les trajectoires régulières deviennent isolées et il apparait au milieu des anciens domaines de trajectoires régulières d'autres résonances plus petites. On peut noter néanmoins que pour des perturbations faibles, les trajectoires régulières limitent le chaos. Ceci apparait nettement figure 56.

En revanche, pour de fortes perturbations, le chaos se généralise, il ne reste des trajectoires régulières qu'au voisinage très proche de la résonance ou aux frontières de la zone de circulation, cf figure 57. Le mouvement de rotation du satellite n'est plus prédictible, même à court terme. On parle de rotation chaotique

Ce phénomène, loin d'être exceptionnel, existe dans le système solaire. La figure suivante applique les paramètres dynamiques du couple Saturne-Hypérion ($\epsilon = 0.2$ et e = 0.1) au modèle que nous avons décrit.

Nous venons de voir que le mouvement de rotation d'Hypérion est un mouvement chaotique qui se trouve dans la région chaotique voisine des points instables de sa résonance 1 :1 spin-orbite. Ceci nous a permis de comprendre l'intérêt du modèle générique de pendule. Ceci nous a permis aussi de montrer l'apparition du chaos dans un problème de mécanique céleste. L'apparition de régions chaotiques au voisinage de résonances est un phénomène extrêmement répandu !

FIGURE 57 – Espace des phases de la rotation d'Hypérion, $\epsilon = 0.2$ et e = 0.1.

Eléments de Mécanique Céleste V0.9

85

7 Perspectives

De la même manière, les couplages orbites-orbites font apparaître des comportements similaires. La figure ci-contre (58) présente par exemple le paramètre critique θ qui est une fonction linéraire des paramètres Képlériens Ω_{Terre} , ω_{Terre} , Ω_{Mars} et ω_{Mars} .

FIGURE 58 – Paramètre critique theta, evolution sur 100 Millions d'années.

Le terme perturbateur est dans ce cas bien inférieur, aussi les phénomènes de chaos arrivent à des horizons temporels bien supérieurs. Toutefois, ces phénomènes deviennent dominants passé 100 millions d'années, au point qu'il est impossible de déterminer la position des planètes audelà de cet horizon temporel. Non que l'on soit incapable de faire les calculs ou que l'on se heurte à des problèmes numériques (voir figure 7), mais le système dynamique amplifie de façon importante toute incertitude sur les conditions initiales ($|\delta Z(t)| \approx e^{\lambda t} |\delta Z_0|$)

FIGURE 59 – Au bout de 100 millions d'années, la précision sur la position est perdue : comparaison des erreurs de modèle et des erreurs numériques (Laskar, 1994). Les positions (phases orbitales) des planètes ne sont plus déterminables au delà de 100 Mans. On a perdu le déterminisme ... on parle alors de chaos déterministe

Eléments de Mécanique Céleste V0.9

8 Annexe A : Changements de coordonnées -

8.1 Coordonnées canoniques et transformations canoniques

l'objet de ce chapitre est de déterminer quelles sont les transformations que l'on peut faire sur les variables p et q tout en laissant au système hamiltonien sa forme simple et pratique. On appelle cette classe de transformation les transformations canoniques.

Le choix des coordonnées généralisées q n'est limité par aucune condition si ce n'est qu'elles doivent définir de façon univoque la position du système dans l'espace. L'aspect formel des équations de Lagrange (84) ne dépend pas de ce choix, et dans ce sens on peut dire que les équations de Lagrange sont invariantes par rapport à la transformation qui fait passer des coordonnées généralisées $q = (q_1, \ldots, q_m)$ à d'autres coordonnées généralisées indépendantes $Q = (Q_1, \ldots, Q_m)$. Les nouvelles coordonnées Q sont fonctions des anciennes q. Il est facile de voir qu'elles peuvent dépendre aussi de la variable t de manière explicite. Ainsi ces transformations qui laissent invariant le lagrangien sont des transformations du type :

$$Q_i = Q_i(q, t)$$

Outre les équations de Lagrange, ces transformations laissent évidement invariante la forme (92) des équations de Hamilton.

Cependant les équations de Hamilton admettent en réalité une classe beaucoup plus grande de transformations qui les laissent invariantes. Cette circonstance découle du fait que dans la méthode de Hamilton, les impulsions généralisées $p = (p_1, \ldots, p_m)$ jouent le rôle de variables indépendantes au même titre que les coordonnées q. C'est pourquoi la notion de transformation peut être élargie de façon à englober la transformation des 2m variables indépendantes q et p en les nouvelles variables Q et P suivant les formules :

$$Q_i = Q_i(q, p, t), \quad P_i = P_i(q, p, t)$$
 (226)

Cet élargissement de la classe des transformations qui laissent le système d'équation invariant constitue un des avantages essentiels de la méthode de Hamilton en Mécanique. Cependant, attention ! Il serait complètement faux d'en déduire que les équations hamiltoniennes du mouvement conservent leur forme canoniques pour toute transformation du type (226). Déterminons donc, parmi les transformations de type (226), quelles sont les transformations permises

sur les variables p et q qui laissent au système (92) sa forme hamiltonienne.

Introduisons tout d'abord la définition suivante :

Définition : Considérons un système d'équation Hamiltonien définit par la fonction de Hamilton H(q, p, t) dans le jeu de variables canoniques (q, p). C'est à dire que :

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q} \quad avec \quad H = H(q, p, t)$$

Eléments de Mécanique Céleste V0.9

Soit une application $g: {}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^m \times \mathbb{R}^m$ qui définit un changement de variable du jeu de coordonnées (q, p) dans le jeu de coordonnées (Q, P) = (Q(q, p, t), P(q, p, t)). On dira que g est canonique si dans les nouvelles variables Q et P les équations hamiltoniennes se mettent encore sous la forme :

$$\dot{Q} = \frac{\partial H}{\partial P}, \quad \dot{P} = -\frac{\partial H}{\partial Q}$$

avec \widetilde{H} une application de $\mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}$ dans \mathbb{R} qui est fonction de $(Q, P, t)^4$.

Cherchons maintenant, à quelle condition un changement de variable est canonique. Considérons le système hamiltonien donné dans la définition H(q, p, t) dans le jeu de variables (q, p). Supposons donné un changement de variables entre les anciennes variables (q, p) et des nouvelles variables (Q, P) explicité par 2m fonctions f_i et g_i de \mathbb{R}^{2m+1} dans \mathbb{R} de la manière suivante :

$$q_i = f_i(Q, P, t),$$

 $p_i = g_i(Q, P, t)$
(227)

(Ce système de 2m fonctions à 2m variables est supposé bijectif bien sûr, au moins localement, puisque ce sont des changements de variables. Le système inverse donne alors les (Q, P) en fonction des (q, p).)

Pour déterminer à quelle condition ce changement de variables est canonique nous allons calculer les dérivées partielles de la fonction H(q(Q, P, t), p(Q, P, t), t) par rapport à chacune des variables P_i et Q_i . Nous en déduirons les expressions des \dot{Q}_i et des \dot{P}_i . On en tirera ensuite facilement des conditions de canonicité.

On appelle H^* la fonction de Hamilton H écrite en les variables (Q, P, t) :

$$H^*(Q, P, t) = H(q(Q, P, t), p(Q, P, t), t)$$

Donc pour toute variable x parmi l'ensemble des variables $((Q_i, P_i))$ on a :

$$\frac{\partial H^*}{\partial x} = \sum_{i} \left(\frac{\partial H}{\partial q_i} \frac{\partial q_i}{\partial x} + \frac{\partial H}{\partial p_i} \frac{\partial p_i}{\partial x} \right) = \sum_{i} \left(\frac{\partial H}{\partial q_i} \frac{\partial f_i}{\partial x} + \frac{\partial H}{\partial p_i} \frac{\partial g_i}{\partial x} \right)$$

Or d'aprés les équations de Hamilton et l'expression (227) on a :

^{4.} Il existe en fait une autre définition des transformations canoniques comme étant celles qui conservent la 2forme différentielle $dq \wedge dp$. C'est une définition trés proche de celle-ci mais un peu plus restrictive. Elle est plus généralement admise, mais elle est plus compliqué en ce qu'elle nécessite tout l'appareil des k-formes différentielles pour sa définition. La définition donnée ici sera largement suffisante pour les besoins de ce cours. Voir [1] pour plus de détails.

$$\frac{\partial H}{\partial p_i} = \dot{q}_i = \frac{df_i}{dt} = \sum_j \left(\frac{\partial f_i}{\partial Q_j} \dot{Q}_j + \frac{\partial f_i}{\partial P_j} \dot{P}_j\right) + \frac{\partial f_i}{\partial t},$$
(228)

$$-\frac{\partial H}{\partial q_i} = \dot{p}_i = \frac{dg_i}{dt} = \sum_j \left(\frac{\partial g_i}{\partial Q_j}\dot{Q}_j + \frac{\partial g_i}{\partial P_j}\dot{P}_j\right) + \frac{\partial g_i}{\partial t}$$
(229)

On obtient donc l'expression générale de la dérivée partielle de H^* en fonction des Q_i et P_i :

$$\begin{array}{ll} \frac{\partial H^*}{\partial x} &=& \displaystyle \sum_{j} \sum_{i} (\frac{\partial f_i}{\partial Q_j} \frac{\partial g_i}{\partial x} - \frac{\partial f_i}{\partial x} \frac{\partial g_i}{\partial Q_j}) \dot{Q_j} + \\ && \displaystyle \sum_{j} \sum_{i} (\frac{\partial f_i}{\partial P_j} \frac{\partial g_i}{\partial x} - \frac{\partial f_i}{\partial x} \frac{\partial g_i}{\partial P_j}) \dot{P_j} + \\ && \displaystyle \sum_{i} (\frac{\partial f_i}{\partial t} \frac{\partial g_i}{\partial x} - \frac{\partial f_i}{\partial x} \frac{\partial g_i}{\partial t}) \end{array}$$

Pour simplifier les notations, on introduit le *crochet de Lagrange* de 2 variables u et v associé au changement de variable défini par les f_i et les g_i qui s'écrit :

$$[u,v] = \sum_{i} \left(\frac{\partial f_i}{\partial u} \frac{\partial g_i}{\partial v} - \frac{\partial f_i}{\partial v} \frac{\partial g_i}{\partial u}\right)$$

Ainsi l'équation générale se réécrit simplement de la manière suivante :

$$\frac{\partial H^*}{\partial x} = \sum_j ([Q_j, x]\dot{Q}_j + [P_j, x]\dot{P}_j) + [t, x]$$

Il suffit maintenant d'identifier cette équation aux équations canoniques en (Q, P) pour déterminer les conditions de canonicité. On obtient le théorème suivant :

Théorème 1 : Soient 2m fonctions Q(q, p), P(q, p) de 2m variables p, q définissant un changement de variable $q: \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^m \times \mathbb{R}^m$. Ce changement de variable est canonique si et seulement si les conditions suivantes sont respectées :

- pour tout *i* et tout *j* on $a: [Q_i, P_j] = \delta_{ij}, [Q_i, Q_j] = 0$ et $[P_i, P_j] = 0$. - *il existe une application* $F: \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R} \longrightarrow \mathbb{R}$ telle que $\frac{\partial F}{\partial x} = [t, x]$ pour *x* pris dans *l'ensemble des variables* (Q_i, P_i) .

Le nouvel hamiltonien est alors $\widetilde{H} = H^* - F$.

Remarque : Si le changement de variables ne dépend pas explicitement du temps t, on a $\frac{\partial f_i}{\partial t}$ = $\frac{\partial g_i}{\partial t} = 0$ pour tout *i*. Les crochets $[t, Q_j]$ et $[t, P_j]$ sont alors nuls quelque soit *j* et l'on peut

Eléments de Mécanique Céleste V0.9

prendre F = 0. Dans ce cas l'hamiltonien conserve sa valeur : $\tilde{H} = H^*$.

En résumé, on a donc avec ce théorème, une méthode simple de vérification qu'un changement de variable est canonique. Dans le cas général où le changement de variables dépend du temps, et l'on veut générer un changement de variable particulier, il reste cependant à trouver la fonction F. Le théorème suivant, qui donne une autre condition nécessaire et suffisante de canonicité plus concise et plus facile à utiliser peut aider à trouver cette fonction comme on le verra dans le paragraphe suivant :

Théorème 2 : Pour qu'une transformation $(q,p) \longrightarrow (Q,P)$ soit canonique, il faut et il suffit qu'il existe une fonction \tilde{F} telle que la forme différentielle :

$$\sum_{j} p_j dq_j - P_j dQ_j + \widetilde{F} dt$$
(230)

soit une différentielle totale. On a alors $\tilde{F} = \tilde{H} - H^* = -F$

Ce théorème découle directement du théorème précédent. On pourra consulter [3] pour plus de détails sur la démonstration.

Remarque : si le changement de variable ne dépend pas du temps alors une condition nécessaire et suffisante pour que le changement de variable (Q, P) soit canonique est que $\sum (p_j dq_j - P_j dQ_j)$ soit une différentielle totale.

Du théorème 2 on déduit immédiatement 4 conditions équivalentes pour qu'un changement de variables soit canonique. Il s'agit simplement de la condition (230) du théorème écrite dans 4 jeux de variables différents : (q, Q), (q, P), (p, Q) et (p, P). Voici ces conditions équivalentes :

$$\sum_{j} p_{j} dq_{j} - P_{j} dQ_{j} + (\widetilde{H} - H^{*}) dt = dG_{1},$$
(231)

$$\sum_{j} p_j dq_j + Q_j dP_j + (\widetilde{H} - H^*) dt = dG_2,$$
(232)

$$\sum_{j} -q_{j}dp_{j} - P_{j}dQ_{j} + (\tilde{H} - H^{*})dt = dG_{3},$$
(233)

$$\sum_{j} -q_{j}dp_{j} + Q_{j}dP_{j} + (\tilde{H} - H^{*})dt = dG_{4}.$$
(234)

où les second membres sont les différentielles totales de fonctions différentes notées $G_1(q, Q, t)$, $G_2(q, P, t)$, $G_3(p, Q, t)$ et $G_4(p, P, t)$. La relation (231) n'est autre que la condition nécessaire et suffisante du théorème 2, tandis que les relations suivantes s'en déduisent immédiatement. (cf [3] pour les détails).

Remarque : Dans la pratique ce sont ces 4 conditions que l'on utilisera car elles sont faciles à manier. Cependant on fera attention à choisir une fonction G parmi G_1 , G_2 , G_3 ou G_4 adaptée

Eléments de Mécanique Céleste V0.9 90 ISAE - SUPAERO

au problème. En effet on ne peut pas prendre n'importe quel jeu de variable pour n'importe quel changement de variable. Il faut naturellement que le jeu de 2m variable dont dépend G soit indépendant. Par exemple pour la transformation canonique *identité* le choix de $G_1(q, Q)$ ne peut fonctionner car le jeu de variable (q, Q) n'est pas indépendant, donc la différentielle (231) n'est pas totale et le théorème ne s'applique pas. Il en va de même pour G_4 . Par contre, bien sûr pour la transformation *identité* le théorème s'applique parfaitement avec G_2 et G_3 .

En conclusion, les théorèmes 1 et 2 nous donne 2 caractérisations simples de l'ensemble des changements de variable canoniques. Naturellement, on utilisera préférentiellement le théorème 1 lorsque l'on voudra vérifier qu'un changement de variable donné est canonique puisque dans ce cas la vérification est quasi immédiate. Par contre on utilisera plutôt le théorème 2 lorsque l'on voudra générer un changement de variable canonique puisque dans ce cas cela est simple : il suffit de choisir n'importe quelle fonction $G_1(q, Q)$ ou $G_2(q, P)$ ou $G_3(p, Q)$ ou encore $G_4(p, P)$ et il en découle immédiatement le changement de variable et le nouvel hamiltonien associé. Pour cette raison, on appelle les fonctions du types $G_1(q, Q)$, $G_2(q, P)$, $G_3(p, Q)$ ou $G_4(p, P)$, des *fonctions génératrices*.

Exemples de changements de variables canoniques :

- On peut vérifier facilement, que le changement de variables qui envoie les coordonnées polaires (r, ϕ) dans les coordonnées cartesiennes (x, y), definit de la manière suivante, est canonique :

$$\begin{cases} x = \sqrt{2r}\cos\phi\\ y = \sqrt{2r}\sin\phi \end{cases}$$

- On peut vérifier facilement, que le changement de variable linéaire (Q, P) = (A.q, B.p)est canonique si et seulement si $B = (A^t)^{-1}$. Ceci est particulièrement utile lorsqu'on veut (et cela arrive souvent!) un changement de variable qui soit linéaire et qui vérifie Q = A.q par exemple. Il n'y a alors qu'une seule solution, c'est la transformation indiquée au dessus.

Exemples de fonctions génératrices :

- La fonction $G_2 = \sum q_i P_i$ engendre la transformation identique puisqu'on a :

$$p_i = \frac{\partial G_2}{\partial q_i} = P_i, \quad Q_i = \frac{\partial G_2}{\partial P_i} = q_i, \quad et \quad \widetilde{H} = H^*$$

- La fonction $G_1 = \sum q_i Q_i$ inverse le rÙle des variables et de leur conjuguées puisqu'on a :

$$p_i = \frac{\partial G_1}{\partial q_i} = Q_i, \quad P_i = -\frac{\partial G_1}{\partial Q_i} = -q_i, \quad et \quad \widetilde{H} = H^*$$

Attention cependant au changement de signe qui ne peut être supprimer si l'on veut un changement de variable canonique.

8.2 Fonctions génératrices

Dans ce chapitre, on montre comment utiliser le théorème 2 pour trouver des changements de variables canoniques qui aboutiront à une simplification de l'hamiltonien.

On vient de voir plus haut qu'il est facile de générer un changement de variables canonique. Cependant en pratique il est difficile de prévoir quelle sera la modification que ce changement de variable va induire sur l'hamiltonien au moment ou l'on choisit les fonctions G_1 , G_2 , G_3 ou G_4 . Pourtant, pour que la modification de l'hamiltonien aille dans le sens d'une simplification, il faudrait pouvoir la déterminer dès le choix des fonctions G_i et ainsi aboutir à la simplification voulue à l'avance. On peut arriver à ce résultat en utilisant le théorème 2.

Prenons par exemple, un changement de variables canonique qui vérifie la condition (232) du théorème 2. D'aprés sa définition, la fonction G_2 est une fonction des variables (q, P, t). On peut donc naturellement écrire sa différentielle totale sous sa forme classique suivante :

$$dG_2 = \sum_j \left(\frac{\partial G_2}{\partial q_j} dq_j + \frac{\partial G_2}{\partial P_j} dP_j\right) + \frac{\partial G_2}{\partial t} dt$$

En égalisant les termes de cette différentielle totale avec la condition de canonicité (232), on déduit immédiatement le système d'équation suivant :

$$\forall i, \quad p_i = \frac{\partial G_2(q, P, t)}{\partial q_i},\tag{235}$$

$$\forall i, \quad Q_i = \frac{\partial G_2(q, P, t)}{\partial P_i},\tag{236}$$

$$\widetilde{H}(Q,P,t) - H^*(q,p,t) = \frac{\partial G_2(q,P,t)}{\partial t}$$
(237)

Le choix de la fonction G_2 détermine donc entièrement, non seulement le changement de variable au travers des 2m équations (235) et (236) comme on l'a vu plus haut, mais aussi la simplification induite sur l'hamiltonien comme le montre l'équation (237). Jusque là il n'y a rien d'étonnant puisque la fonction G_2 est une *fonction génératrice*.

Maintenant, si l'on cherche à ramener l'hamiltonien à une fonction simple donnée \tilde{H} , il suffit de prendre comme fonction génératrice, la fonction G_2 qui verifie l'équation aux dérivées partielles :

$$\frac{\partial G_2(q, P, t)}{\partial t} = \widetilde{H}(Q, P, t) - H^*(q, p, t)$$

C'est à dire :

$$\frac{\partial G_2(q, P, t)}{\partial t} = \widetilde{H}(\frac{\partial G_2(q, P, t)}{\partial P_j}, P_j, t) - H^*(q_j, \frac{\partial G_2(q, P, t)}{\partial q_j}, t)$$
(238)

Ceci constitue donc une méthode pour déterminer à priori la fonction génératrice G_2 du changement de variable qui donnera les simplifications attendues sur l'hamiltonien. Notez que tout ce qui vient d'être montré avec G_2 pourrait être fait de la même manière avec G_1 , G_3 ou G_4 . Dans la pratique on choisira une fonction génératrice des variables les plus adaptées à la transformation souhaitées.

Eléments de Mécanique Céleste V0.9 92

8.3 Résolution par la méthode d'Hamilton-Jacobi

Dans ce chapitre, on montre que l'utilisation des changements de variables canoniques peut dans certains cas s'avérer être une méthode d'intégration des équations du mouvement extrêmement efficace.

Remarquons tout d'abord, que les équations canoniques dans lesquelles l'hamiltonien H dépend uniquement des coordonnées Q s'intègre facilement. En effet, si H = K(Q), les équations canoniques s'écrivent :

$$\dot{Q} = 0, \quad \dot{P} = \frac{\partial K}{\partial Q}.$$

D'où l'on déduit immédiatement :

$$Q(t) = Q(0), \quad P(t) = P(0) + t \left. \frac{\partial K}{\partial Q} \right|_{Q_0}.$$
 (239)

Cherchons maintenant les transformations canoniques qui ramènent le hamiltonien H(p,q)à une forme K(Q). Cherchons pour cela une fonction génératrice $G_1(q,Q)$ d'une telle transformation, par exemple. De la relation (231) nous obtenons :

$$p = \frac{\partial G_1(Q,q)}{\partial q}$$

Ceci nous donne la condition sur G_1 suivante,

$$H\left(\frac{\partial q, G_1(q, Q)}{\partial q}, t\right) = K(Q), \tag{240}$$

où aprés dérivation il faut remplacer q par q(Q, P). L'équation (240) quand Q est fixé s'appelle *l'équation de Hamilton-Jacobi*.

On vient de montrer ici la condition nécessaire du théorème de Jacobi :

Théorème de Jacobi : Si l'on a trouvé une solution $G_1(q, Q)$ de l'équation de Hamiton-Jacobi (240) dépendant de m paramètres Q_i et telle que $det(\frac{\partial^2 G_1}{\partial Q \partial q}) \neq 0^5$, alors les équations canoniques

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$
 (241)

s'intègrent explicitement par quadrature (cf (239)). Les fonctions Q(q, p) définies par les équations $\frac{\partial G_1(q,Q)}{\partial q} = p$ sont n intégrales premières des équations (241).

^{5.} Cette condition sur le déterminant de la Hessienne de G_1 n'est autre qu'une condition nécessaire et suffisante pour assurer que le jeu de variable (q, Q) est indépendant et qu'on peut utiliser la fonction G_1 comme génératrice (cf la remarque sur le théorème 2 au paragraphe 8.1).

Montrons rapidement la condition suffisante du théorème. Considérons la transformation canonique de génératrice $G_1(q, Q)$. D'aprés (231), $p = \frac{\partial G_1(Q,q)}{\partial q}$, d'où l'on déduit Q(q, p) (au moins localement) puisque $det(\frac{\partial^2 G_1}{\partial Q \partial q}) \neq 0$. Calculons alors la fonction H(q, p) dans les nouvelles coordonnées (Q, P). On a $H(q, p) = H(q, \frac{\partial G_1}{\partial q}(q, Q))$. Pour trouver le hamiltonien il suffit alors de remplacer dans cette relation (aprés dérivation) q par son expression en fonction de P et Q. Or, puisque par hypothèse $G_1(q, Q)$ est solution de l'équation de Hamilton-Jacobi l'expression de cette fonction $H(q, \frac{\partial G_1}{\partial q}(q, Q))$ ne dépend pas de q de sorte que l'on a tout simplement :

$$H(p,q) = K(Q)$$

Il en resulte le théorème de Jacobi.

Remarque : La méthode d'Hamilton-Jacobi s'étend facilement au cas où la fonction génératrice, ici G_1 , dépend du temps. Dans ce cas, seule l'équation d'Hamilton-Jacobi est modifiée tandis que le théorème reste le même. Elle devient l'équation suivante :

$$H\left(\frac{\partial G_1(q,Q,t)}{\partial q},q,t\right) + \frac{\partial G_1(q,Q,t)}{\partial t} = K(Q).$$

En résumé, on vient de montrer que si l'on trouve une solution G_1 à l'équation de Hamilton-Jacobi (240), le problème de l'intégration des équations canoniques est résolu et le changement de variable qui permet de passer dans le jeu de variables qui intègre le problème se formule simplement. Notez que ce qui vient d'être montré pour G_1 est encore vrai pour G_2 , G_3 ou encore G_4 telles quelles sont définies dans les relations (232) à (234) pour peu que l'on adapte les hypothèses du théorème de Jacobi au jeu de variables correspondant à chaque G_i .

La méthode d'Hamilton-Jacobi que l'on vient de voir, ramène donc la résolution d'un système d'équations différentielles (92) à la recherche de l'intégrale complète de l'équation aux dérivées partielles (240). Il parait étonnant que cette réduction d'un problème simple à un problème plus compliqué constitue une méthode efficace de résolution. Et pourtant, dans la pratique c'est une méthode puissante d'intégration analytique. Elle constitue d'ailleurs un des atouts majeurs de l'utilisation du formalisme hamiltonien.

Eléments de Mécanique Céleste V0.9

9 Annexe B : Le pendule harmonique et le problème de Kepler -Approche hamiltonienne

9.1 Cas du pendule harmonique

9.1.1 Ecriture de l'hamiltonien

Le problème du pendule harmonique est le problème du pendule aux petites oscillations. Il s'agit du problème du pendule simple définit au paragraphe 3.8 dans lequel on limite l'étude au domaine $\theta \ll 1$. Dans la pratique, l'énergie cinétique reste la même et l'énergie potentielle devient :

$$U = mgl\frac{\theta^2}{2}.$$
(242)

On appelle encore ce problème *le problème de l'oscillateur harmonique*, car il dépasse le cadre de la mécanique classique et il concerne tous les problèmes d'attraction d'un point par un centre fixe selon une force proportionnelle à la distance. On retrouve ce problème fondamentale dans toutes les dynamiques aux voisinages d'équilibres linéairement stables, dans la physique. Sous sa forme fondamental, on introduit en général la variable *élongation* : $q = l\theta$ et *le coefficient d'attraction* : $k = m\frac{g}{l}$ de sorte que l'énergie cinétique et l'énergie potentielle s'écrivent maintenant :

$$T = \frac{1}{2}m\dot{q}^2, \quad U = \frac{1}{2}kq^2$$
 (243)

Le lagrangien du problème prend donc la forme suivante :

$$L(q,\dot{q}) = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2$$
(244)

La variable conjuguée de q est alors $p = \frac{\partial L}{\partial \dot{q}} = m\dot{q}$. Ceci nous donne l'hamiltonien de l'oscillateur harmonique :

$$H(q,p) = \frac{1}{2m}p^2 + \frac{1}{2}kq^2.$$
(245)

9.1.2 Recherche d'une fonction génératrice

Intégrons cette équation par la méthode d'Hamilton-Jacobi. Pour cela cherchons si elle existe, une fonction génératrice $G_2(q, P, t)$ de la transformation $(q, p) \longrightarrow (Q, P)$ telle que le jeu de variables (q, P) soit indépendant (i.e. $det(\frac{\partial^2 G_2}{\partial P \partial q}) \neq 0$) et qui soit solution de l'équation d'Hamilton-Jacobi :

$$H\left(q,\frac{\partial G_2}{\partial q},t\right) + \frac{\partial G_2}{\partial t} = K(P).$$
(246)

On suppose dans un premier temps, que G_2 génère les variables (Q, P) de telle sorte que le jeu (q, P) soit indépendant et on résoud l'équation d'Hamilton-Jacobi. Nous vérifierons par la suite

que la solution trouvée pour G_2 vérifie bien cette condition. L'équation de Hamilton-Jacobi se traduit ici par :

$$\frac{1}{2m} \left(\frac{\partial G_2}{\partial q}\right)^2 + \frac{1}{2}kq^2 + \frac{\partial G_2}{\partial t} = K(P).$$
(247)

Etant donnée la forme de cette équation aux dérivées partielles qui contraint G_2 , on cherche G_2 sous la forme suivante : $G_2 = F_1(q, P) + F_2(t, P)$. Ceci transforme l'équation aux dérivées partielles en l'équation suivante en F_1 et F_2 :

$$\frac{1}{2m}\left(\frac{\partial F_1}{\partial q}\right)^2 + \frac{1}{2}kq^2 = -\frac{\partial F_2}{\partial t} + K(P).$$
(248)

Le membre de gauche de cette équation est une fonction de q et de P, tandis que le membre de droite est une fonction de t et P. Comme les variables q, P et t sont 3 variables indépendantes, d'une part le membre de gauche est indépendant de q, puisque c'est une fonction qui ne dépend que de P et t d'aprés l'égalité, et d'autre part le membre de droite est indépendant de t, puisque c'est une fonction qui ne dépend que de q et P d'aprés l'égalité. Ainsi chacun des 2 membres est égal à une même fonction de P uniquement, qu'on note f(P).

$$f(P) = -\frac{\partial F_2}{\partial t} \tag{249}$$

$$f(P) = \frac{1}{2m} \left(\frac{\partial F_1}{\partial q}\right)^2 + \frac{1}{2}kq^2$$
(250)

Ce système s'intègre facilement en introduisant 2 fonctions arbitraires g_1 et g_2 de la manière suivante :

$$F_2 = -f(P)t + g_2(P) \tag{251}$$

$$F_1 = \pm \int \sqrt{m(2f(P) - kq^2)} dq + g_1(P)$$
(252)

C'est à dire

$$G_2 = -f(P)t \pm \int \sqrt{m(2f(P) - kq^2)} dq + h(P) \quad avec \quad h = g_1 + g_2.$$
(253)

Ce G_2 ne sera solution que si, comme nous l'avons indiqué plus haut, $det(\frac{\partial^2 G_2}{\partial P \partial q}) \neq 0$. On vient donc de trouver ici grâce à la méthode d'Hamilton-Jacobi toute une famille (paramétrée par f et h) de fonctions génératrices G_2 qui envoient (q, p) dans un jeu de variable (Q, P) dans lequel le système hamiltonien est facile à intégrer (i.e. H = K(P)). Cette famille de fonction génératrice est définie par le système :

$$\begin{cases} G_2(q, P, t) = -f(P)t \pm \int \sqrt{m(2f(P) - kq^2)} dq + h(P) \\ \frac{1}{\sqrt{2f(P) - kq^2}} \left. \frac{df(x)}{dx} \right|_{x=P} \neq 0 \end{cases}$$
(254)

Eléments de Mécanique Céleste V0.9

96

Exhibons parmi ces solutions, la génératrice G_2 la plus simple à écrire en choisissant f(P) = Pafin que $det(\frac{\partial^2 G_2}{\partial P \partial q}) \neq 0$, et h(P) = 0. Alors on obtient une génératrice simple qui amène l'hamiltonien H dans un jeu de variables (Q, P) dans lequel H = K(P) est facilement intégrable :

$$G_2 = -Pt \pm \int \sqrt{m(2P - kq^2)} dq.$$
(255)

9.1.3 Integration du système

Quitte à chercher un H facilement intégrable, cherchons carrément un H nul, si c'est possible et le problème sera tout intégré. Si G_2 génére une transformation de (q, p) dans un jeu de variables (Q, P) qui annule H alors Q et P seront des constantes. Nous les appellerons α et β . Alors G_2 s'écrira :

$$G_2 = -\beta t \pm \int \sqrt{m(2\beta - kq^2)} dq$$
(256)

Ce changement de variable est bien possible tant que $\beta \neq \frac{kq^2}{2}$ puisque :

$$det(\frac{\partial^2 G_2}{\partial P \partial q}) = \frac{1}{\sqrt{2\beta - kq^2}} \left. \frac{dx}{dx} \right|_{x=\beta} = \frac{1}{\sqrt{2\beta - kq^2}}.$$
(257)

C'est gagné ! On a un jeu de variable dans lequel le système hamiltonien s'intègre immédiatement puisqu'il y est nul à toutes dates. Ce jeu est le suivant :

$$Q = \alpha = \frac{\partial G_2}{\partial \beta} = -t \pm \int \frac{m dq}{\sqrt{m(2\beta - kq^2)}}, \quad P = \beta$$
(258)

C'est à dire :

$$Q = -t \pm \sqrt{\frac{m}{k}} \arcsin\left(\sqrt{\frac{k}{2\beta}q}\right), \quad P = \beta.$$
(259)

Si on préfére l'écrire dans les varaibles initiales. Cela donne :

$$q = \pm \sqrt{\frac{2\beta}{k}} \sin \sqrt{\frac{k}{m}} (t+\alpha), \quad p = \frac{\partial G_2}{\partial q} = \pm \sqrt{2m\beta} \cos \sqrt{\frac{k}{m}} (t+\alpha).$$
(260)

On reconnait ici en α et β les 2 constantes d'intégrations. Quant au signe \pm il est choisi selon les conditions initiales, par exemple suivant le signe de la vitesse à l'instant $t = -\alpha$. Ces trajectoires sont des ellipses dans l'espace des phases (q, p).

Remarque : Dans cet exemple, β représente l'énergie totale du système car on a en fait : $H = -\frac{\partial G_2}{\partial t} = \beta$. Cette énergie est bien constante comme on pouvait s'y attendre puisque le système est conservatif. Sachant cela à l'avance, on aurait pu chercher des variables canoniques (x, y) qui vérifient H(q(x, y), p(x, y)) = K(y) et qui conservent en même temps la valeur de

Eléments de Mécanique Céleste V0.9

l'hamiltonien (i.e. $H(q, p) \equiv K(y)$). Pour obtenir un tel hamiltonien il suffit de considérer la fonction génératrice G_2 indépendante du temps qui vérifie l'équation de Hamilton-Jacobi :

$$H\left(q,\frac{\partial G_2}{\partial q}\right) = y. \tag{261}$$

On a alors en effet y qui est constante puisque $\dot{y} = \frac{\partial K(y)}{\partial x} = 0$. H est bien constant egal à K(y) puisque $K(y) - H(p,q) = \frac{\partial G_2}{\partial t} = 0$. On a alors $y = \beta$ l'énergie et x sa variable conjuguée est le temps puisque $\dot{x} = \frac{\partial K(y)}{\partial y} = 1$. Cette méthode, qui consiste à rechercher un jeu de variables dont l'une est constante et égale au nouvel hamiltonien, convient à tous les systèmes conservatifs. Ceci n'est pas pour nous étonner puisque dans les systèmes conservatifs le hamiltonien se conserve, c'est donc une intégrale première du mouvement et donc si on l'utilise comme variable dans le nouveau jeu de variables, elle sera constante égale au nouvel hamiltonien. La variable conjuguée de l'hamiltonien est alors toujours le temps.

9.2 Cas du problème de Kepler

9.2.1 Ecriture de l'hamiltonien

Reprenons le problème de Kepler tel que nous l'avions posé au paragraphe 3.8.2. On a montré dans ce paragraphe que le lagrangien du problème s'écrivait dans les coordonnées polaires (r, ϕ) :

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) + \frac{m\mu}{r}.$$
(262)

Pour simplifier les écritures, on s'affranchit de la masse en introduisant un nouveau lagrangien L' tel que :

$$L' = \frac{L}{m} = \frac{1}{2}(\dot{r}^2 + r^2\dot{\phi}^2) + \frac{\mu}{r}.$$
(263)

Ce lagrangien n'est autre que l'ancien lagrangien L dans lequel on a pris pour unité de masse, la masse m. Ceci définit de nouvelles impulsions généralisées (P_r, P_{ϕ}) de la manière suivante :

$$P_r = \dot{r}, \quad P_\phi = r^2 \dot{\phi}. \tag{264}$$

Eléments de Mécanique Céleste V0.9

98

On en déduit le hamiltonien du problème affranchi du paramètre m:

$$H(r,\phi,P_r,P_{\phi}) = \frac{1}{2}(P_r^2 + \frac{P_{\phi}^2}{r^2}) - \frac{\mu}{r}.$$
(265)

9.2.2 Recherche d'une fonction génératrice

Intégrons cette équation par la méthode d'Hamilton-Jacobi. Pour cela cherchons si elle existe, une fonction génératrice $G_2(r, \phi, y_1, y_2, t)$ de la transformation $(r, \phi, P_r, P_{\phi}) \longrightarrow (x_1, x_2, y_1, y_2)$ telle que le jeu de variables (r, ϕ, y_1, y_2, t) soit indépendant, et telle qu'elle soit solution de l'équation d'Hamilton-Jacobi :

$$H\left(r,\phi,\frac{\partial G_2}{\partial r},\frac{\partial G_2}{\partial \phi},t\right) + \frac{\partial G_2}{\partial t} = K(y_1,y_2).$$
(266)

Dans le problème de Kepler, le système représenté par l'hamiltonien est conservatif. H est donc constant et vaut une valeur que l'on note h. Sachant cela, on cherche un changement de variable qui face apparaitre cette intégrale première dans les nouvelles variables sous la forme $y_1 = h$. D'aprés la remarque du paragraphe précédent, il suffit de chercher une fonction génératrice G_2 indépendante de t telle que $K(y_1, y_2) = y_1$. Cela revient donc à rechercher une fonction $G_2(r, \phi, y_1, y_2)$ telle que (r, ϕ, y_1, y_2, t) soit indépendant et que G_2 soit solution de l'équation d'Hamilton-Jacobi suivante :

$$\frac{1}{2}\left[\left(\frac{\partial G_2}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial G_2}{\partial \phi}\right)^2\right] - \frac{\mu}{r} = y_1.$$
(267)

Notons, avant de se lancer dans les calculs, que la variable ϕ n'apparait pas explicitement dans l'expression de $H(r, \phi, P_r, P_{\phi})$. Sa variable conjuguée P_{ϕ} est donc constante, c'est une autre intégrale première du mouvement indépendante de h. Afin de faire apparaître cette intégrale première dans les nouvelles variables, nous allons choisir G_2 telle qu'elle engendre l'identité selon la variable ϕ . Il suffit pour cela, de choisir G_2 de la forme suivante :

$$G_2(r,\phi,y_1,y_2) = \phi y_2 + S(r,y_1,y_2), \tag{268}$$

où S est une fonction quelconque. En effet dans ce cas $P_{\phi} = \frac{\partial G_2}{\partial \phi} = y_2$ (cf l'exemple du paragraphe 8.1).

Ainsi désormais, le changement de variables que l'on cherche peut être réduit à la transformation $(r, \phi, P_r, P_{\phi}) \longrightarrow (x_1, x_2, h, P_{\phi})$ telle que le jeu de variables $(r, \phi, h, P_{\phi}, t)$ soit indépendant et avec la génératrice $G_2(r, \phi, h, P_{\phi}) = \phi y_2 + S(r, h, P_{\phi})$ dans laquelle S est maintenant solution de l'équation d'Hamilton-Jacobi :

$$\frac{1}{2}\left(\frac{\partial S}{\partial r}\right)^2 - \frac{\mu}{r} + \frac{y_2^2}{2r^2} = y_1.$$
(269)

D'après les réductions faites sur G_2 grâce aux 2 intégrales premières que l'on a trouvées, cette équation se réécrit :

$$\frac{1}{2}\left(\frac{\partial S(r,P_{\phi})}{\partial r}\right)^2 - \frac{\mu}{r} + \frac{P_{\phi}^2}{2r^2} - h = 0.$$
(270)

Eléments de Mécanique Céleste V0.9

C'est à dire

$$\frac{\partial S(r, P_{\phi})}{\partial r} = \sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^2}{r^2}}$$
(271)

Cette équation s'intègre de la manière suivante :

$$S(r, P_{\phi}) = \pm \int_{r_o}^r \sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^2}{r^2}} dr, \quad avec \quad r_0 = r_0(h, P_{\phi}).$$
(272)

Ceci nous donne immédiatement les 4 équations qui définissent le changement de variable de (r, ϕ, P_r, P_{ϕ}) en (x_1, x_2, h, P_{ϕ}) :

$$P_r = \frac{\partial S}{\partial r} = \pm \sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^2}{r^2}},$$
(273)

$$P_{\phi} = \frac{\partial G_2}{\partial \phi} = y_2, \tag{274}$$

$$x_1 = \frac{\partial G_2}{\partial y_1} = \frac{\partial S}{\partial h} = \pm \int_{r_o}^r \frac{dr}{\sqrt{2h + \frac{2\mu}{r} - \frac{P_\phi^2}{r^2}}} \mp \frac{\partial r_0}{\partial h} \sqrt{2h + \frac{2\mu}{r_0} - \frac{P_\phi^2}{r_0^2}}, \quad (275)$$

$$x_{2} = \frac{\partial G_{2}}{\partial P_{\phi}} = \phi \mp \int_{r_{o}}^{r} \frac{P_{\phi} dr}{r^{2} \sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^{2}}{r^{2}}}}.$$
(276)

Remarque : On peut vérifier à ce stade que le jeu de variables (r, ϕ, h, P_{ϕ}) est bien indépendant en calculant la Hessienne de G_2 .

9.2.3 Intégration du système

Le changement de variable que l'on vient de trouver précédemment, transforme $H(r, \phi, P_r, P_{\phi})$ en $K(x_1, x_2, y_1, y_2) = y_1 = h$ qui est constant. Donc en particulier il contient l'intégration du système. Exhibons cette intégration et écrivons là dans les variables initiales (r, ϕ, P_r, P_{ϕ}) . Ainsi on obtiendra les trajectoires du système dans ce jeu variables qui a un sens physique plus naturel. Tout d'abord, en ce qui concerne l'intégration, elle est évidente dans le nouveau jeu de variables (x_1, x_2, y_1, y_2) . Elle est donnée par les 4 équations suivantes dans lesquelles on introduit une nouvelle constante ω :

$$x_1 = \int_{t_0}^t \frac{\partial K}{\partial h} = t - t_0, \qquad (277)$$

$$x_2 = \int_{t_0}^t \frac{\partial K}{\partial y_2} = \omega \quad constante,$$
(278)

$$y_1 = -\int_{t_0}^t \frac{\partial K}{\partial x_1} = h \quad constante,$$
 (279)

$$y_2 = -\int_{t_0}^t \frac{\partial K}{\partial x_2} = P_\phi \quad constante.$$
 (280)

Ecrivons maintenant ces équations intégrées dans l'ancien jeu de variables :

On égalise tout d'abord l'équation (275) à l'équation (277). Cela nous donne l'équation suivante :

$$\pm \int_{r_0}^r \frac{dr}{\sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^2}{r^2}}} \mp \frac{\partial r_0}{\partial h} \sqrt{2h + \frac{2\mu}{r_0} - \frac{P_{\phi}^2}{r_0^2}} = t - t_0.$$
(281)

Selon cette équation t_0 sera l'instant pour lequel r vaut r_0 si r_0 est l'une des racines de l'équation $2h + \frac{2\mu}{r_0} - \frac{P_{\phi}^2}{r_0^2} = 0$ (car cela annule le terme en $\frac{\partial r_0}{\partial h}$). Mais d'autre part si r_0 est racine de l'équation $2h + \frac{2\mu}{r_0} - \frac{P_{\phi}^2}{r_0^2} = 0$ alors r_0 annule \dot{r} puisque $\dot{r} = P_r = \pm \sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^2}{r_0^2}}$ d'aprés l'équation(273). En d'autres termes, pour que t_0 soit l'instant pour lequel r vaut r_0 , il suffit de choisir r_0 comme étant un extremum de r. Prenons par exemple r_0 comme étant le péricentre. Alors $t_0 = t_p$ la date de passage au péricentre et r_0 est donné par l'expression :

$$r_0 = \frac{P_{\phi}^2/\mu}{1 + \sqrt{1 + 2hP_{\phi}^2/\mu^2}}$$
(282)

– Ayant choisi r_0 de cette manière, on égalise maintenant l'équation (276) à l'équation (278). Cela donne :

$$\phi \mp \int_{r_o}^r \frac{P_{\phi} dr}{r^2 \sqrt{2h + \frac{2\mu}{r} - \frac{P_{\phi}^2}{r^2}}} = \omega$$
(283)

 ω s'interprète donc comme la valeur de l'angle ϕ lors du passage au péricentre.

– On peut maintenant intégrer l'équation du mouvement. En posant $u = \frac{1}{r}$, l'équation (283) s'intègre facilement pour donner :

$$u = \frac{1 + \sqrt{1 + 2hP_{\phi}^2/\mu^2}\cos(\phi - \omega)}{P_{\phi}^2/\mu}$$
(284)

Cette équation correspond à l'équation polaire d'une conique de foyer le centre attracteur, d'excentricité $e = \sqrt{1 + 2hP_{\phi}^2/\mu^2}$ et de paramètre $p = P_{\phi}^2/\mu$. L'angle $\phi - \omega$ s'interprète comme étant l'anomalie vraie v.

$$r = \frac{p}{1 + e\cos v} \tag{285}$$

Traçons ces trajectoires dans le plan :

FIGURE 60 – Exemple de trajectoire Keplerienne.

Finalement le problème de Kepler admet donc le nouveau jeu de variables canoniques suivant :

$$(t - t_0, \omega, h, P_\phi) \tag{286}$$

dont les 3 dernières, étant des constantes, sont *des éléments d'orbite canoniques*. L'énergie h est la variable conjuguée du temps et le moment cinétique P_{ϕ} est conjugué de l'argument du péricentre. L'hamiltonien dans ces variables vaut : $K(t - t_0, \omega, h, P_{\phi}) = h$.

Remarque : Si on avait considéré le problème de Kepler dans un espace euclidien de dimension 3 (pour espace de configuration) au lieu de le regarder dans le plan, nous aurions alors bien sûr, un couple de variable supplémentaire. Ce couple de variables aurait donné 2 éléments d'orbite canoniques supplémentaires qui se seraient interprétés comme Θ , une projection du moment cinétique et Ω la longitude du noeud ascendant. L'hamiltonien aurait valu dans ces variables : $K(t - t_0, \omega, \Omega, h, P_{\phi}, \Theta) = h$.

Eléments de Mécanique Céleste V0.9 102

9.2.4 Ecriture en variables de Delaunay

Pour plus de clarté, on peut exprimer le mouvement en écrivant r comme une fonction de t. Nous le faisons dans cette section en introduisant les éléments de Delaunay. Dans le cas du mouvement elliptique, posons $a = -\frac{\mu}{2h}$ et utilisons la relation $P_{\phi} = \sqrt{\mu a(1-e^2)}$ issue de l'expression de l'excentricité dans (284). Ceci nous permet d' introduire le changement de variable régularisant : $r \longrightarrow E$ défini par $r = a (1 - e \cos E)$. Ce changement de variable, associé à la définition faite plus haut de r_0 permet d'intégrer l'équation (281) et donne *l'équation de Kepler* :

$$t - t_p = \sqrt{\frac{a^3}{\mu}} \left(E - e \sin E \right).$$
 (287)

Il apparait maintenant une nouvelle variable naturelle qui est l'anomalie moyenne $M = \sqrt{\frac{\mu}{a^3}}(t-t_p)$. C'est une variable pratique car d'une part elle est plus facile à manipuler que E puisque son mouvement est régulier et d'autre part elle est physiquement plus adaptée aux problèmes liés aux orbites que $(t-t_p)$ puisqu'elle est périodique de même période que l'orbite. On peut faire en sorte, que M soit une des variables canoniques et garder l'expression trés simple de K. Il faut alors définir une transformation canonique entre $(t-t_p, h)$ et (M, L) (L étant la variable conjuguée de M) qui ne modifie ni l'hamiltonien ni les autres variables. Il suffit pour cela d'avoir $(t-t_p)dh = MdL$ car alors le remplacement des variables $(t-t_p, h)$ par les variables (M, L) n'a aucun impact sur dG_2 et donc ni sur les autres variables ni sur K. Ceci se traduit par un choix de L tel que :

$$(t-t_p)\frac{\mu}{2a^2}da - \sqrt{\frac{\mu}{a^3}}(t-t_p)dL = 0 \quad soit \quad \frac{dL}{da} = \frac{1}{2}\sqrt{\frac{\mu}{a}}$$
 (288)

On en déduit $L = \sqrt{\mu a}$ et $h = -\frac{\mu^2}{2L^2}$. C'est ainsi qu'on obtient ce qu'on appelle *les éléments canoniques de Delaunay* (l, g, L, G) définis avec les notations de Poincaré par :

$$l = M \quad L = \sqrt{\mu a}$$

$$g = \omega \quad G = L\sqrt{1 - e^2}$$
(289)

L'hamiltonien correspondant conserve sa valeur :

$$H(l,g,L,G) = -\frac{\mu^2}{2L^2}.$$
(290)

On en déduit immédiatement les équations d'Hamilton dans le jeu de variables de Delaunay :

$$\dot{l} = \frac{\mu^2}{L^3}, \quad \dot{L} = 0,$$

 $\dot{g} = 0, \quad \dot{G} = 0.$
(291)

Eléments de Mécanique Céleste V0.9 103 ISAE - SUPAERO

Remarque : Naturellement ici, tout cet appareil de fonction génératrices et de système hamiltonien peut sembler lourd pour la résolution d'un problème aussi simple que l'oscillateur harmonique ou même pour la résolution du problème de Kepler qui est plus simple avec le formalisme vectoriel habituel. Notez cependant que dans chaque cas, il nous a permis de mettre en évidence non pas une seule solution mais toute une famille. Néanmoins l'avantage majeur de ce formalisme n'est pas là, il est dans le fait que ce formalisme se généralise immédiatement aux systèmes à plusieurs degrés de liberté (ici la résolution aurait été la même avec 6 variables au lieu de 2 ou 4) et aux systèmes perturbés.

104

10 Annexe C : Developpements en série

Trés souvent, la complexité des calculs en mécanique celeste ne laisse pas d'autres choix que de développer les diverses expressions en séries infinies qui sont ensuite tronquées pour simplifier les calculs. Même si souvent, l'approximation des restes est trés grossière, cette approche donne de nombreux résultats pertinents. Dans ce chapitre, nous présentons quelques développements en série des équations du problème de Kepler qui sont extrêmement utiles pour traiter de nombreux problèmes de mécanique celeste.

10.1 Eviter les séries

Avant de présenter quelques développements en série trés utiles, notons qu'il existe quelques exemples de grandeurs dans le problème de Kepler qui se calculent de manière exactes. Dans ce cas il ne faut pas s'en priver ! Pour cela, les relations suivantes entre les différentes anomalies $v = \phi - \omega$, E et M sont extrêmement utiles :

$$\frac{dE}{dM} = \frac{a}{r}, \quad \frac{dv}{dM} = \frac{a^2}{r^2}\sqrt{1-e^2}, \quad \frac{dv}{dE} = \frac{a}{r}\sqrt{1-e^2}.$$
(292)

La première relation découle de l'équation de Kepler (287). La deuxième est obtenue en égalisant $P_{\phi} = \sqrt{\mu a(1-e^2)}$ issue de l'expression de l'excentricité dans (284) et l'équation de Hamilton $\dot{\phi} = P_{\phi}$: ce n'est autre que la loi des aires. Et la troisième est le quotient des deux premières.

On en déduit l'expression exacte de la valeur moyenne de

$$\frac{a^n}{r^n}$$

, $n \in \mathbb{Z}$:

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{a}{r} dM = \frac{1}{2\pi} \int_0^{2\pi} dE = 1,$$
(293)

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{a^2}{r^2} dM = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{\sqrt{1-e^2}} dv = \frac{1}{\sqrt{1-e^2}}.$$
(294)

Et pour $n \ge 1$, cela donne

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{a^{n+2}}{r^{n+2}} dM = \frac{1}{2\pi} \int_0^{2\pi} \frac{(1+e\cos v)^n}{(1-e^2)^{n+1/2}} dv$$
(295)

$$= \frac{1}{(1-e^2)^{n+1/2}} \sum_{k=0}^{[n/2]} \frac{n!}{2^{2k}(n-2k)!(k!)^2} e^{2k}$$
(296)

où [n/2] est la partie entière de n/2. De la même manière on a :

Eléments de Mécanique Céleste V0.9

105

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{r^{n-1}}{a^{n-1}} dM = \frac{1}{2\pi} \int_0^{2\pi} \left(1 - e\cos E\right)^n dE$$
(297)

$$= \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!}{2^{2k}(n-2k)!(k!)^2} e^{2k}.$$
 (298)

10.2 Equation de Kepler et développements en série

Le calcul des coordonnées du mobile en orbite nécessite le calcul de l'anomalie vraie v ou de l'anomalie excentrique E, qui s'obtient à partir de l'anomalie moyenne M grâce à l'équation de Kepler :

$$M = E - e\sin E. \tag{299}$$

On a, comme on a vu précedemment :

$$\frac{dM}{dE} = 1 - e\cos E = \frac{r}{a}.$$
(300)

Si e < 1, alors $\frac{dM}{dE} > 0$ et M sera une fonction strictement croissante de E. Cette équation possédera dans ce cas une solution unique. Cette équation se résoud de manière numérique. Il existe d'ailleurs un grand nombre de façons différentes de le faire. Cependant, lorsqu'on désire une approche analytique pour expliquer les phénomènes, il faut obtenir l'inversion de cette formule analytiquement. Dans la pratique on la réalise à l'aide de développements en série, avec des séries de Fourier quand les grandeurs sont périodiques ou à l'aide de séries de Taylor lorsque l'excentricité est petite par exemple.

Prenons le cas de $\frac{a}{r}$ par exemple. C'est une fonction périodique de M, on peut donc effectuer son développement en série de Fourier de la manière suivante :

$$\frac{a}{r} = \sum_{-\infty}^{+\infty} c_k e^{ikM} \tag{301}$$

avec

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} \frac{a}{r} e^{-ikM} dM = \frac{1}{2\pi} \int_0^{2\pi} e^{-ik(E-e\sin E)} dE = \frac{1}{2\pi} \int_0^{2\pi} e^{ike\sin E} e^{-ikE} dE.$$
(302)

D'aprés l'égalité précédente, c_k est aussi le k-ème coefficient de Fourier du développement en série de Fourier de $e^{ike\sin E}$. Or on sait que :

$$e^{ike\sin E} = e^{\frac{ke}{2}\left(e^{iE} - e^{-iE}\right)} = \sum_{-\infty}^{+\infty} J_n(ke)e^{inE},$$
 (303)

où l'on reconnait la définition des fonctions de Bessel $J_n(x)$ (voir l'annexe, chapitre ??). On a donc,

106

$$\frac{a}{r} = \sum_{-\infty}^{+\infty} c_k e^{ikM}, \quad avec \quad c_k = J_k(ke)$$
(304)

Eléments de Mécanique Céleste V0.9

10.3 Développements en anomalie moyenne M

Développement de a/r :

D'aprés les propriétés des fonctions de Bessel, $J_{-k}(-x) = J_k(x)$ (voir l'annexe, chapitre ??). En introduisant ce résultat dans le développement (301) de a/r on a :

$$\frac{a}{r} = 1 + \sum_{k=1}^{+\infty} 2J_k(ke) \cos{(kM)}.$$
(305)

Développement de sin (mE) et $\cos(mE)$: En intégrant $\frac{dE}{dM} = \frac{a}{r}$ par rapport à M, on a :

$$E = M + \sum_{k=1}^{+\infty} \frac{2J_k(ke)}{k} \sin(kM).$$
 (306)

On aura plus généralement :

$$e^{imE} = \sum_{-\infty}^{+\infty} c_{m,k} e^{ikM}$$
(307)

où les coefficients $c_{m,k}$ vérifient :

$$c_{m,k} = \frac{1}{2\pi} \int_0^{2\pi} e^{imE} e^{-ikM} dM = \frac{1}{2\pi} \int_0^{2\pi} e^{imE} e^{-ikM} \left(1 - e\cos E\right) dE.$$
 (308)

Ce qui donne quand on intègre par parties pour $k \neq 0$:

$$c_{m,k} = \frac{m}{2k\pi} \int_0^{2\pi} e^{imE} e^{-ikM} dE = \frac{m}{2k\pi} \int_0^{2\pi} e^{i((m-k)E + ke\sin E)} dE.$$
 (309)

C'est à dire, d'aprés la définition des fonctions de Bessel :

$$c_{m,k} = \frac{m}{k} J_{k-m}(ke). \tag{310}$$

Pour k = 0, on aura :

$$c_{m,0} = \frac{1}{2\pi} \int_0^{2\pi} e^{imE} dM = \frac{1}{2\pi} \int_0^{2\pi} \left(e^{imE} - \frac{e}{2} e^{i(m+1)E} - \frac{e}{2} e^{i(m-1)E} \right) dE.$$
 (311)

Soit :

$$c_{0,0} = 1, \quad c_{1,0} = c_{-1,0} = -\frac{e}{2}, \quad c_{m,0} = 0, \quad pour \quad m \notin \{-1, 0, 1\}.$$
 (312)

On a donc finalement :

$$e^{imE} = c_{m,0} + \sum_{k \neq 0} \frac{m}{k} J_{k-m}(ke) e^{ikM}$$
 (313)

$$\cos(mE) = c_{m,0} + \sum_{k=1}^{+\infty} \frac{m}{k} \left(J_{k-m}(ke) - J_{k+m}(ke) \right) \cos(kM)$$
(314)

$$\sin(mE) = \sum_{k=1}^{+\infty} \frac{m}{k} \left(J_{k-m}(ke) + J_{k+m}(ke) \right) \sin(kM).$$
(315)

En particulier, on aura pour m = 1 en utilisant les propriétés des fonctions de Bessel :

$$\cos(E) = -\frac{e}{2} + 2\sum_{k=1}^{+\infty} \frac{J'_k(ke)}{k} \cos(kM),$$
(316)

$$\sin(E) = 2\sum_{k=1}^{+\infty} \frac{J_k(ke)}{ke} \sin(kM)$$
(317)

Développement de r^n/a^n :

Les développements de $\cos E$ et $\sin E$ précédents permettent d'obtenir directement les 3 développement suivants :

$$\frac{r}{a} = 1 - e\cos E = 1 + \frac{e^2}{2} - 2e\sum_{k=1}^{+\infty} \frac{J'_k(ke)}{k}\cos\left(kM\right),\tag{318}$$

$$\frac{r}{a}\cos v = \cos E - e = -\frac{3e}{2} + 2\sum_{k=1}^{+\infty} \frac{J'_k(ke)}{k}\cos{(kM)},$$
(319)

$$\frac{r}{a}\sin v = \sqrt{1 - e^2}\sin E = 2\sqrt{1 - e^2}\sum_{k=1}^{+\infty}\frac{J_k(ke)}{ke}\sin(kM)$$
(320)

Ces relations, combinées avec le développement (301) de a/r permet, par développement des produits, d'obtenir tous développements de la forme :

$$\frac{a^n}{r^n}e^{imv}, \quad avec \quad n, m \in \mathbb{Z}.$$
(321)

Ces développements interviennent dans de nombreux problèmes et peuvent être trés utiles. Cependant, ils sont lourds à produire puisqu'il faut développer n produits de développements à l'ordre n... Dans la pratique, on les produit sur des manipulateurs algébriques en faisant des opérations formelles tronquées à l'ordre voulu. Il est beaucoup plus difficile et souvent aujourd'hui impossible, d'obtenir des expressions exactes utilisables.

On remarquera cependant, que pour tout $n \in \mathbb{N}$ et tout $m \in \mathbb{Z}$, on peut obtenir sans difficultés, les expressions de la forme :

$$\frac{r^n}{a^n}e^{imv}. (322)$$

Eléments de Mécanique Céleste V0.9 108 ISAE - SUPAERO
Il suffit de faire un développement intermédiaire en anomalie excentrique E que l'on linéarise, pour ensuite pouvoir utiliser les développements de e^{imE} , $\cos(mE)$ et $\sin(mE)$. Par exemple, en utilisant la relation $J_{k-2}(x) - J_{k+1}(x) = \frac{4k}{x}J'_k(x) - \frac{4k}{x^2}J_k(x)$, on aura :

$$\frac{r^2}{a^2} = (1 - e\cos E)^2 = 1 + \frac{e^2}{2} - 2e\cos E + \frac{e^2}{2}\cos 2E$$
(323)

$$= 1 + \frac{3e^2}{2} - 4\sum_{k=1}^{+\infty} \frac{J_k(ke)}{k^2} \cos(kM).$$
(324)

Remarque : Les développements en anomalie excentrique sont en général plus simples que les développements en anomalie moyenne. Certains sont même polynomiaux. newpage

109

11 Annexe D : Principales formules pour les coniques

Références

- [1] Arnold V. :*Méthodes Mathématiques de la Mécanique Classique*, Editions MIR, Moscou 1976.
- [2] Coddington E.A., Levinson N.: Theory of Ordinary Differential Equations, Mc Graw-Hill, New York 1955.
- [3] Landau L., Lifchitz E. : *Physique Théorique, Mécanique*, Editions MIR, Moscou 1964. (1967).
- [4] Szebehely V.: Theory of Orbits, Academic Press (1967).
- [5] Gastineau M. and Laskar J. : TRIP 0.99, Manuel de référence TRIP, IMCCE, Paris Observatory, 2008, http://www.imcce.fr/Equipes/ASD/trip/trip.html
- [6] Carl D. Murray and Stanley F. Dermott. :*Solar System Dynamics*, Cambridge University Press. (February 13, 2000)
- [7] A. Danjon : Astronomie générale, réédition Blanchard, Paris, 1980
- [8] J. Kovalevsky : Introduction à la Mécanique Céleste, Armand Colin, 1963
- [9] *Les méthodes modernes de la mécanique céleste*, Ed. D. Benest C. Froeschlé, Editions frontières, 1990
- [10] H. Goldstein : Classical Mechanics, Addison-Wesley Publishing Company, 1980
- [11] E. Stiefel G. Scheifele : Linear and Regular Celestial Mechanics, Springer-Verlag, 1971
- [12] D. Brouwer G. Clemence : Methods of Celestial Mechanics, Academic press, 1961
- [13] F. Tisserand : Traité de mécanique céleste, Gauthier-Villars, 1888, 1960
- [14] H. Poincaré : Les nouvelles méthodes de la mécanique céleste, Dover, 1892, 1957